Advanced Programming Guide

Advanced Programming Guide
Table Of Contents
Page PG--1

TABLE OF CONTENTS

1- |ntr0dUCti0n PN CEUDU AT EEORDEEE YD IR MRS YNV E U RUBEFR O G EEe UE W m"’1

2. Chaining, Shared Data and Heap «ccsccesceccucossscasacncacaaunnasa PG-T
2.1. Chaining Without Shared Data .s.c.vsscsacvnaccnsancascnanans PG-2

2.2. Chaining With Shared Data .scccevceescs Wioususssvcasssansesvans PG-3

3. Assembier Interfacing ...ccoceosuscsssssccnccassnvencanssannunssas PG-8
3.1. Conventions for Assembler Routines «c..eccacsoa smevnBuseanurnn PG-8
3.2. Names and Name Translation scueceaae feocsanem s svessmsananus PG-9
3.3. Segment Usage ..caooo aacomcancaaa hsnsscoscsscssswsssnseves PG-10
3.4. Variable ACCESS cuaccessnans sescewssnuvsscasssassssssscevasow PG-10
3.5. Parameter Passing ..ccscsvessass nesscsacuusccssnnsasceavessn PG-11
3.6. Function Procedure Result Passing cvcascossasssan cnvssenenses PG-12
3.7. Register Usage .cocoscnvsaaana ccoasmuna nessuvssavancssenssan PG-12
3.8. External Accesses .c.oocuvsvs chwsvsasacscsscansausoesnssanans PG 12
3.9. Requesting Library Searches ..ccucosrancoccanvans cenessacanas PG-13
3.10. Assembly Module Initializations .vcesscussscosvncesnssanasana PG-13
3.11. Assembly Module Template ceacsvvuonvaccosacconsuassunasanans PG-13
3.12. Sample Assembly Module cccoovaae wemEcocasocasoasa vravesaness PG-15

.12.1. Definition Module .ucoescwnvscsaancvsncacasasnsanseaa PG-15

3
3.12.2. Implementation Moduleconcucs cawcccsssasesswvenns PA-15
3.12.3. Name Translation Tableccacovcacavrussasncrassanse PO-16

3.13. Module Moves ...ccvcan hnswoscmssEsusavmooEee e cawbeoEmouE «o PG-17

Advanced Programming Guide
Table Of Contents

Page PG--2
3.14. Machine Level Data Representation ..o.eeeecavecnermansensanss PG-20
3.14.1 General ConsiderationS wu.cveveeecsasvosnansnsnsnsnsnsns PG-20
3.14.2 BOOLEAN tiieveanensarnmeunranuoscansnonsnnansansssnns PG-20
3.14.3. CHAR i icvosanananmsnsvasmrnrnsannanscnnnosmnnnnnss PG-21
3.14.4. CARDINAL tierenrtnnononansrsncannnannananncannananusss PG-21
3.14.5. INTEGER tuuiciuiucvencenonennanansnnnsncannnanonnnnsss PG-21
3.14.6. EnuUMeErations cuveeveesanesnanenconsssnososnnsnsnsnsss PG-22
3.14.7. SUDranNgesS ciovvevmonsunanceancaessossansansaranens oo PG-22
3.14.8. REAL tevivennrnnsrassinansnsoncsonsasnnonmncannnnsns . PG-22
3.14.9. ADDRESS, Pointers and WORD ..cuscncnusnsonunnnannsn PG-24
3.14.10. BITSET and SetS tovsenencnerosansnssoonsnsannnnnsns PG-24
314,17, AITAQYS wuievonscomsnsnssncaanancounnsnssaannmonassns PG-24
314012, RECOIdS vavueenorasunusnsnncssaanasnsrensassannssssanss PG-25
4. Programming With Better Efficiency sessmsmccacwsueEmms «es PG-26
4.1. The WITH Statement .. v vieieincnnnnsnsssnnnnconcncnnnraras PG-26
4.2. The CASE Statement -viiiieiiicitventncnanonsannsnanensnanns PG-29

4.3. Constant Expression Evaluation / Strength Redu cvcvaveceninns PG-30

Advanced Programming Guide
Introduction
Page PG-1

ADVANCED PROGRAMMING GUIDE

The catchwords

- chaining between programs

- using shared data and heap

- the assembter interface

- machine level data representation
- better efficiency in programming

apply to this document.

Chapter 1. Introduction

'Advanced programming' as understood in this guide consists of several disciplines, as
chaining, sharing data and heap between programs, using assembler modules, and how
to get the smallest possible code for a given task.

Chapter 2. Chaining, Shared Data and Heap

To allow you the construction of large program systems, the Modula-2 System for Z80
CP/M features a chaining scheme that allows to share data and the heap between
several programs. You can also use the chain scheme without shared data, of course.

Advanced Programming Guide
Chaining, Shared Data and Heap
Page PG-2

Section 1. Chaining Without Shared Data

in this case, you simply use the Chain routine from the Chaining module to start
one program after another one.

A simple example:

MODULE FirstOne; MODULE SecondOne;
FROM Chaining IMPORT
Chain;

BEGIN (* SecondOne *)
BEGIN (* FirstOne *)
END SecondOne.

Chain('SECONDON.COM');
END FirstOne.

At the end of FirstOne, SecondOne is invoked by the statement CHAIN('SECOND-
ON.COM').

To compile link and run this example, use the following command lines:

A>MC FIRSTONE <CR>»>
A>MC SECONDON <CR>
A>ML FIRSTONE <CR»>
A>ML SECONDON <CR»>

A>FIRSTONE <CR>

Advanced Programming Guide
Chaining, Shared Data and Heap
Page PG-3

Section 2. Chaining With Shared Data

Let's go one step beyond: you will fearn how to share data between different
programs that form a system.

To use this feature, you have to

- provide a pure data module. This module consists of a definition
module in which you define all the data items you want to be shared
between the various program parts, and an empty implementation.

- use the Chain procedure as indicated above.

- link the program's parts as described in detail later in this
document.

First, you will see the above example extended to inciude shared data.

MODULE AssignVariable; MODULE WriteVariable;
FROM SimpleShare IMPORT FROM SimplteShare IMPORT
SharedCardinal; SharedCardinal;
FROM Chaining IMPORT FROM [nOut IMPORT
CHAIN; WriteCard;
BEGIN (* AssignVariable *) BEGIN (* WriteVariable *)
SharedCardinal := 10000; WriteCard(SharedCardinal, 5);
CHAIN("WRITEVAR.COM'); END WriteVariable.

END AssignVariable,

As you see, there is a new module involved called SimpleShare. This is the pure data
module. It may contain but constants, types, and variables, but no procedures and/or

modules. It is a tibrary module consisting of a DEFINITION and an IMPLEMENTATION
module. It looks like: , ‘

Advanced Programming Guide
Chaining, Shared Data and Heap
Page PG-4

DEFINITION MODULE SimpleShare; IMPLEMENTATION MODULE SimpleShare;

EXPORT QUALIFIED END SimpleShare.
SharedCardinal;

VAR
SharedCardinal: CARDINAL;

END SimpleShare.

Compile, link and run is done as follows:

A>MC SIMPLESH.DEF <CR»>

A>MC SIMPLESH <CR>»

A>MC ASSIGNVA <CR»>

A>MC WRITEVAR <CR>

A>ML ASSIGNVA/H:5000/S:SIMPLESH <CR»>
A>ML WRITEVAR/H:5000/S:SIMPLESH <CR>
A>ASSIGNVA <CR»>

Here, the linker is told to set the heap start address to 5000H by using its /H
switch., You can tell it the name of the shared data module by setting the /S
switch as indicated in the above example.

NOTE - The heap start address can be set arbitrary; the only thing to watch
for is that the heap or the shared data module do not overlay either code
or data of one of the programs. If this is case, the linker issues an appro-
priate error message when linking that program. The messages are:

---- overlapping code & data segments
---- overlapping code & shared segments
---- overlapping data & heap segments

If you set the heap too low, i.e. into the code, you will always get the
last of the three error messages listed above.

The lower the heap start address, the larger the heap space that can be used by the
program. Keep in mind that the largest program of your system has to fit (including
its data area) between the CP/M program start (100H = 256) and the shared data
module's start address (see the linker statistics enabled by the /V-switch).

Advanced Programming Guide
Chaining, Shared Data and Heap
Page PG-5

A systematic approach to finding a correct heap start address is

- link all component programs as if they were just normal programs.
Use the verbose option of the linker (/V).

- for each program part, write down the Data Stop address that can
be found in the linker statistics.

- search the largest of these addresses.

- Add at least one to it. You can reserve some space to be able to
make additions or corrections also in the largest program of the
system without you having to relink the whole system after each
change. A typical approach is to set the address to the next page
boundary (i.e. instead of 347BH you use 3500H). If and how much
space you want to get reserved is up to you.

By following the instructions you just read, you create programs that are able to use
one or more variable(s) to communicate.

Normally, each program initializes the heap as it starts up. To use also the heap as
a shared data area, you have to prevent this initialization because it would
destroy the so called free list. This is achieved by means of the /N switch of the
linker. This switch directs the linker to use an initialization routine that doesn't set
the heap.

The free list is used by the heap management to link together all non used heap
memory segments. If you would re-initialize it upon start of a program that shares
data in the heap, the second program would allocate (by NEW and
SYSTEM.ALLOCATE) heap parts that are already used, thus overwriting valid
information.

Advanced Programming Guide
Chaining, Shared Data and Heap
Page PG-6

In the next example, the heap is also used as a shared data area.

MODULE Createltem; MODUL.E Useltem;
FROM HeapShare IMPORT FROM SimpleShare IMPORT
[tem, ftem,
Sharedltem: Sharedltem:
FROM Chaining IMPORT FROM InOut IMPORT
CHAIN:; Write, Writel.n, WriteCard:
BEGIN (* Createltem *) BEGIN (* Useltem *)
NEW({ Sharedltem }; WriteCard{Shareditem ~.number, 5);
WITH Sharedltem™ DO WriteLn; Write(Sharedltem™.alfa):
number := 100; WriteLn;
alfa := 'x'; END Useltem.

END; (* WITH *)
CHAIN('"USEITEM.COM'):
END Createltem.

DEFINITION MODULE HeapShare; IMPLEMENTATION MODULE HeapShare;
EXPORT QUALIFIED END HeapShare.
ltem,

Sharedltem:

TYPE
ftem = POINTER TO RECORD
number: CARDINAL;
alfa: CHAR;
END:;

VAR
Shareditem: item;

END HeapShare.

Advanced Programming Guide
Chaining, Shared Data and Heap
Page PG-7

To compile, link and run this example, use:

A>MC HEAPSHAR.DEF <CR»>

A>MC HEAPSHAR <CR>

A>MC CREATEIT <CR»>

A>MC USEITEM <CR»>

A>ML CREATEIT/H:5000/S:HEAPSHAR <CR>
A>ML_USEITEM/H:5000/S:HEAPSHAR/N <CR>
A>CREATEIT <CR»>

NOTE - One of the most important fact about that shared data and shared heap
scheme is that your Modula-2 program source does not contain any
dependabilities regarding this special use of the shared module and the
shared heap. This ensures that such programs are still portable although
in their final compiled and linked form, they include quite a deal of
machine dependency.

Advanced Programming Guide
Assembler Interfacing
Page PG-8

Chapter 3. Assembler Interfacing

Assembly language interfacing is provided in this system to be able to write really
time critical sections of code in assembly language. The code procedure approach
used by many implementations was rejected because we think that you should be able
to use symbolic assembly language and not criptic hexadecimal or octal codes.

Please restrict use of assembly language as far as possible; our code generator is
quite good, although neither perfect nor able to compete with a tricky assembler
programmer.

Consider also that a conceptually faster algorithm written in a high level language
has a good chance to outperform a slow one coded in fast 'n tricky assembly
language.

Section 1. Conventions for Assembler Routines

To integrate assembler modules into your Modula-2 programs, follow these steps:

1. Make a normal DEFINITION MODULE describing the interface of your
assembler module.

2. Write the assembly language module body. Proceed as described
below.

3. Assemble this module with M80 or RMAC, creating a REL file.

4, Write a name translation table according to the specifications given
later, if necessary.

5. Convert the REL file with the aid of MR into a MRL file.

6. Link your main program as usual using ML.

WARNING - Although this seems to be very easy, there are several pitfalls to
watch for. If you aren't proficient in assembler, leave writing
assembler modules to others.

Advanced Programming Guide
Assembler Interfacing
Page PG-9

Section 2. Names and Name Translation

Because M80 shortens all entries to a maximum of six characters and also uppercases
everything, there is an option provided by the REL to MRL format converter MR,
that allows translation of such names into arbitrary substitutes. These substitutes are
normally qualified identifiers of the form "Moduleldent.Objectldent". The module's
name, naturally, consists of the Moduleldent only.

NOTE - The data segment of a module consists only of the entry point
Moduieldent.Moduleldent. All variables are accessed by adding their
offset to this base address. There are no variables that are known "by
name",

NOTE - The Modula-2 linker limits the length of identifiers consisting of
module name, a dot, and the object name, to 24 characters overall.

The form of the name translation file is:

R2MFile = Line { CR LF Line } .

Line = LibReq | RelName whiteChar { whiteChar } MriName .
LibReq = "' FileName .

FileName = RelName [CharNum [CharNum 1] .

RelName = Char [CharNum [CharNum [CharNum [CharNum [CharNum]]]1] .
whiteChar = TAB | ''.

MriName = Qualldent .

Qualldent = Ident { "' Ident } .

[dent = AnyChar { AnyCharNum } .

Char =A| .|z,

AnyChar = Char | 'a' | w | '2"

Number =0 | ..

CharNum = Char | Number .

AnyCharNum = AnyChar | Number | '$' .

CR = 15C .

LF = 12C .

TAB = 11C .

Examples are given later in this section.

Advanced Programming Guide
Assembler Interfacing
Page PG-10

Section 3. Segment Usage

The MRL format allows for code and data segments (CSEG, DSEG). COMMON stinks of
FORTRAN. No self respecting Modula-2 system would accept such a directive.

Now, some "thou shalt not" statements follow.

Do not use the ORG directive except for the one at the start of each segment
(see assembly module template). Because most assemblers default to ORG 0 at the
start of any segment, there is normally also no need for that directive.

In the code segment, the loading counter may not be set back by an ORG
statement. DS is expanded to DB 0 by the REL to MRL converter,

In the data segment, DB and DW are forbidden, whereas DS can be used. The
COM file doesn't contain any data, but only code. This minimizes disk storage space
of programs and sacrifices initialized data areas.

Section 4. Variable Access

Please note that the compiler doesn't import names and addresses of variables but
rather the start of the data segment and the offset of the respective variables from
this start of the data area. These offsets are calculated by aid of the order of the
variables in the DEFINITION MODULE, followed by the local variables. This implies,
that all local data is allocated behind the exported data.

Advanced Programming Guide
Assembler Interfacing
Page PG-11

Section 5. Parameter Passing

Parameters are passed on the stack. For VAR parameters, their address is pushed
onto the stack, value parameters are copied onto it in full length.

NOTE - The order of the parameters is strictly calculated according to their
order in the source text. This implies that the order of the parameters of
both

PROCEDURE xx{a,b: INTEGER):
and
PROCEDURE xx(a: INTEGER: b: INTEGER);

on the stack before the call is:

+ - -t
| a [| hi memory
B o
| b
e +

This is in contrast to most Pascal implementations.

NOTE - All one byte value parameters are expanded to one word on the stack;
the parameter value is located in the low order byte of that word. All
other sized parameters are passed in exactly their length, for example 3
bytes or 27 bytes.

Open Array Parameters are passed by a descriptor in the parameter list. This
descriptor consists of the address of the parameter and the HIGH-value for the actual
procedure call. This looks as follows:

desc.Address

[-emeemecee | <= Top Of Stack (Stack Pointer)

VAR and value parameters are passed the same way. it is the called procedure's
responsibility to create a copy of the current value for value parameters. MODL IB

Advanced Programming Guide
Assembler Interfacing
Page PG-12

contains the "M-Code" MODLIB.$COPP that expects the descriptor address in HL and
the array element size in BC, which copies the actual! data and modifies the
descriptor accordingly.

Section 6. Function Procedure Result Passing

Before function procedure parameters are loaded onto the stack, space for the
function procedure result is allocated on the stack. This, too, is in contrast to most
other implementations.

Section 7. Register Usage

The IX register is the sacred cow of the high priest of code generation. If you
commit sacrilege by altering its value, you will be damned to eternal toops and many
other interesting effects.

All other registers (resp. their contents) can be destroyed by your routine(s).

Section 8. External Accesses

You can place freely any external accesses in your assembler modules. The names can
be changed on conversion like any other name. There is one point to watch for,
however:

WARNING - All identifiers declared to be external (EXTRN .,..) have to be
referenced at least once. Otherwise, the linker might have difficulties to
work on your assembler module.

Advanced Programming Guide
Assembler Interfacing
Page PG-13

Section 9. Requesting Library Searches

A module has to request all the modules it depends on. This applies to assembly
modules as well as to 'normal' modules. The compiler generates library requests for
each module that is used by the currently compiled one.

To be able to do this also in assembly language, MR (the converter) provides your
code with such requests. You can insert lines that follow the 'LibReq' production in
the name translation file EBNF syntax (see above).

No normal assembly language request ('.REQUEST' in M80) is accepted.

Section 10. Assembly Module Initializations

Initializations of Assembler Modules are called by ML if you write the start label of
your initialization code after the END assembler directive. This looks like:

END Init

NOTE - Initializations can lie but in the code segment. No absolute addresses
may be specified there.

Section 11. Assembly Module Template

An assembler module looks as follows:

; IMPLEMENTATION MODULE MYMOD;
.Z280 ; use Z80 operations.
NAME ('MYMOD"') ;

: EXPORT QUALIFIED ...
PUBLIC DATA ; data area (if any).
PUBLIC H

Advanced Programming Guide
Assembler Interfacing
Page PG-14

; Module code

CSEG

: Module data
DSEG

DATA: ; has to be translated by MR.
DS 2 ; No DB, DW, please.
END

Advanced Programming Guide
Assembler Interfacing
Page PG-15

Section 12. Sample Assembly Module

1. Definition Module

DEFINITION MODULE Silly;
EXPORT QUALIFIED eq, EqTest;

VAR
eq: BOOLEAN;

PROCEDURE EqTest(a,b: CHAR);

END Silly.
2. Implementation Module
.280
NAVE ('SILLY!') ; file name is SILLY.MAC
PUBLIC EQTST ; export procedure
PUBL IC DATA ; export data segment
FALSE EQU O
CSEG
EQTST:
POP 1Y ; return address
POP HL ; "b"
LD A,L ; to A Reg
POP HL ; Ma
cP L ; compare them
LD A,FALSE }
JR NZ,L1 ;
INC A ;
Lt: LD (EQ) ,A ; store value in EQ.
JP (1Y) ; return.

INl: RET ;ojust for fun.

Advanced Programming Guide
Assembler Interfacing
Page PG-16

DSEG
DATA:
EQ:

B3] 1

END INI

3. Name Translation Table

The name transliation table tooks as follows:

SILLY Silty
EQTST Silly.EqTest
DATA Silly.Silly

All text in the transiation table is left-flushed, i.e. text starts in the first column of
each line,

Advanced Programming Guide
Assembler Interfacing

Page PG-17
<mmmm——— - 16 bits ---------- >
MSB LSB
| |
e +
? |
g +
| don't care | char a |
g +
| don't care | char b |
o e +
| return address |
e Fm e SP

Stack grows downward
\Y

Stack immediately after the call of EqTest.

Section 13. Module Moves

As a second sample, the source of the Moves module is presented here. Moves is used
to make fast transfers in RAM, i.e. initialization or assignment of arrays.

DEFIN{TION MODULE Moves;
FROM SYSTEM {MPORT ADDRESS;
EXPORT QUALIFIED Movel eft, MoveRight, Fill;
PROCEDURE MovelLeft(source, destination: ADDRESS; length: CARDINAL);
PROCEDURE MoveRight(source, destination: ADDRESS; length: CARDINAL);
PROCEDURE Fill(start: ADDRESS; length: CARDINAL; ch: CHAR);

END Moves.

Advanced Programming Guide
Assembler Interfacing
Page PG-18

JIMPLEMENTATION MODULE Moves;

’ NAVE ('MOVES') ;
.Z80

; EXPORT QUALIFIED MVL, MVR, FILL;
PUBLIC MVL ,MVR,FILL ,

CSEG : code to follow.

; PROCEDURE MVL (source, destination: ADDRESS; length: CARDINAL);

MVL : POP HL ; ret address
POP BC ; length
POP CE ; destination
EX (SP) ,H : source <--> return address.
LD A,B ;
OR C :
RET Z ; IF length # 0 THEN
LDIR ; MOVE
RET ; END

END MVL;:

PROCEDURE MVR(source, destination: ADDRESS; length: CARDINAL);

MVR: POP HL ; ret address
POP BC ; length
POP CE : destination
EX (SP) ,HL 1 source; push return address back.,
LD A,B :
OR C ;
RET Z ; IF length # O THEN
EX OE ,HL_ ; dest := dest + length - 1;
ADD HL,BC :
DEC H ;
X DE,HL : source := source + length - 1;
ADD H_,BC :
DEC H_ :
LODR ; MOVE
RET ; END;

; END MVR;

.
L)

.
L]

Advanced Programming Guide
Assembler Interfacing
Page PG-19

; PROCEDURE FILL(start: ADDRESS; length: CARDINAL; ch: CHAR);

; or how to use a '"typical programming error" to one's advantage.

FILL:

b

POP
POP
POP
EX
LD
OR
RET
LD
DEC
oR
RET
LD
LD
INC
LDIR
RET

025 BRF

MONO@E~N
R?-‘I 8;

; END FILL;

b

The file MOVES.R2M takes the following form:

END

MOVES
MVL
MVR
FILL

P

~—
-
Wi Wwe wa we WO s T AE am A8 amE w0 wE wa WG ad

3

Moves
Moves.Movel eft
Moves.MoveRight
Moves.Fill

ret address

ch

length

start; push return address back.

IF length # O THEN
Fill first byte

A still "equais" B i.e. BC
can't be 0 if A # 0.
destination = source + 1

Fill memory
END;
END;

Moves. No initialization necessary.

Advanced Programming Guide
Assembler Interfacing
Page PG-20

Section 14. Machine Level Data Representation

1. General Considerations

Assembly language programming demands knowledge of the storage layout of the
objects to act upon. Therefore, the representation of all standard data types are
listed here.

To be able to export variables from an assembler module, one must know how the
compiler allocates storage to variables.

In general, variables are allocated just the space necessary to represent them, i.e. a
CHAR gets one byte. This is in contrast to parameter passing, where all 1-byte
variables are extended to two bytes for efficiency reasons.

2. BOOLEAN

A BOOLEAN variable uses one byte of storage. No packing is done by the compiler.
A formal definition of this type would be:
TYPE BOOLEAN = (FALSE, TRUE);

Possible values are therefore: ORD(TRUE) = 1, ORD(FALSE) = 0. Only the low order
bit is used to determine the BOOLEAN value,

NOTE - On the stack, a BOOLEAN is passed as a 16 bit value. The BOOLEAN
value resides in the low order byte.

Advanced Programming Guide
Assembler Interfacing
Page PG-21

3. CHAR

A CHAR variable uses one byte of storage.
Possible valtues: OC .. 377C.
NOTE - On the stack, a CHAR is passed as a 16 bit value. The CHAR value

resides in the low order byte,

4. CARDINAL
CARDINALs are represented as unsigned numbers in the usual Z80 format (low byte

in low memory).

Possible values: 00000H .. OFFFFH, i.e. 0..65535. No overflow detection is done in
CARDINAL arithmetic.

5. INTEGER

INTEGERs are represented as signed numbers in the usual two's complement form.

Possible values: 8000H .. 7FFFH, i.e. -32768 up to 32767. No overflow detection is
done in INTEGER arithmetic.

Advanced Programming Guide
Assembler Interfacing
Page PG-22

6. Enumerations

Enumerations are somewhat tricky. If they fit into a single byte (i.e. if they have
256 elements, at most), their size is one byte. Larger enumerations use two bytes.

NOTE - As all other one byte variables, one byte enumerations are always
passed as 2 byte values on the stack.

7. Subranges

Subranges have always the same size as their base type. The subrange [0..1] uses
still 2 bytes, although it could be represented in a single byte.

Subranges of CHAR etc. are passed as 16-bit values on the stack.

8. REAL

The REAL format selected for use within the Modula-2 System for Z80 CP/M is the
so calied hidden bit format. This format looks like:

<emm mant(Z) ————s
sign(Z)
sign(Z) = sign of the mantissa of the number.
exp(Z) = exponent to the base 2 of the number, biased by 80H. 0 value
reserved for number O.

Advanced Programming Guide
Assembler Interfacing

Page PG-23
mant(Z) = mantissa of the number with the hi bit always '1' and replaced
by the exponent's fow bit.
Z = sign(Z) * mant{Zz) * o(exp(Z)-80H)

In words, this means:

- A hidden bit coded floating point number consists of three parts: the
sign of the mantissa, the biased exponent, and the mantissa
without the hidden bit. Mantissa and exponent are both coded to the
base 2.

- The sign bit is '"1' for a negative mantissa, and therefore negative
number,

- The exponent may be in the range -127 up to 127. This range is
coded as 1..255. The number 0.0 is represented by a zero exponent
because there is no way to represent it otherwise. The base (radix)
of the exponent is 2, i.e. the mantissa value gets multiplied by
o(exponent-80H), The exponent uses 8 bits. The low bit is stored in
the hi bit of the second byte of the number.

- The mantissa is 24 bits wide. Because the hi bit is always "1, it is
'hidden', i.e. overwritten by the exponent's low bit. Its value is
always in the range 0.5 <= mant(Z) < 1.0.

This format allows positive REAL numbers in the range 0.5 * 0-127 - 5-128 up to
nearly 1.0 * 2127, |n scientific notation, this corresponds to about 2.9387E-39 up to
1.70141E38. The resolution is 1 part out of 22 , or about 7.2 decimal digits
(log(229)),

Besides the relatively large range for a four byte representation, the hidden bit
format also offers the advantage that the significance of the digits sinks monotone, or
formulated easier: To compare two hidden bit numbers, you have to care about the
sign bit, the rest can be compared by dumb byte-by-byte comparisons. No knowledge
of the rest of the representation and also no calculation (i.e. subtraction of the two
numbers) is needed!

Advanced Programming Guide
Assembler Interfacing
Page PG-24

9. ADDRESS, Pointers and WORD

All of these types are represented as unsigned nurmbers.

10. BITSET and Sets

BITSETs and Sets are stored in one WORD, i.e. in 16 bits. each bit corresponds to a
set element. The bit numbers O up fo and including 7 reside in the low order byte,
bits 8 up to and including 15 reside in the high order byte. The bit numbers
correspond to the order of the bit in each byte, i.e. bit 0 of a set resides in the low
order byte bit 0, bit 15 is bit 7 of the high order byte.

11. Arrays

Arrays are represented in row major order, i.e.

VAR a: ARRAY [1..2],[1..3] OF CHAR

is stored as follows:

| ow mem hi mam
R o Fo B o e e = +
| al1,1] | al1,2] | a[1,3] | a[2,1] | a[2,2] | a[2,3) |
o mm - B R o R R e +

Advanced Programming Guide
Assembler Interfacing
Page PG-25

12. Records

in Records, each field is allocated exactly its size, i.e. a CHAR typed field uses one
byte. If a record variable is only one byte in size, it is expanded to two bytes by the
compiler, as mentioned in the beginning of this section.

Variant record variables have their maximum size if they aren't created dynamically
by NEW using tagfieids. In that case, the size of the particular variant is allocated
for such a variable.

If there are closed variants in a type, the maximum size of the closed variant
determines the offset of the next field. Closed variants are usually only applied to
overlay fields of the same size.

Advanced Programming Guide
Programming With Better Efficiency
Page PG-26

Chapter 4. Programming With Better Efficiency

There are several constructs that ease a programmer's work. But, if you
use them in the wrong situation, you can make your code a ot less
efficient. Two of the favourite constructions of that kind are the WITH
statement and the CASE statement.

Another means to generate more efficient code needs some basic
understanding of the compiler's internal work. This is especially necessary
for being able to use the strength reduction optimization the compiler
performs in expressions to its best.

Section 1. The WITH Statement

The WITH statement basically calculates a base address to access a record once and
then saves this address in some local storage. Every access to WITH-referenced items
are made by adding the required offset to the once-calculated address.

The fact that this address is calculated once only shows an evident good use of the
WITH-staternent. Consider the program fragment

VAR
a: ARRAY [0..100, 10..20] OF RECORD
k,I: CARDINAL;
END;

WITH ali, j + 27 DIV n] DO
k 1= | + 10;
I := kK + |3

END; (* WITH *)

ali, j + 27 DIV nl.k = | + 10;
ali, j + 27 DIV nl.l := ali, j + 27 DIV nl.k + j:

The WITH statement does exactly the same to the referenced array element, but it
saves 3 address calculations.

Advanced Programming Guide
Programming With Better Efficiency
Page PG-27

So, this WITH statement not only pays in code size, it pays also in speed.

Another WITH statement using the same array,

WITH al4, 5] DO
k :=j + 10;
=k + j;

END; (¥ WITH *)

is perfectly inefficient. Why? It's simple: The compiler not only performs constant
expression evaluation, it also evaluates address expressions. So, the address of a[4,
5] can be calculated during compite time. The offsets of k and [, of course, are also
constant and therefore, the final addresses of a[4, 5].k and a[4, 5].! can be
calculated at compile time. By using the WITH statement, you prevented the compiler
from doing this. The resulting code, therefore, is slower and larger than necessary.

Now, let's have a look at procedures and their parameters as WITH statement base
addresses.

Consider

TYPE Pointer = POINTER TO RECORD
X,¥y: CARDINAL;
END:;

PROCEDURE xx(VAR a: Pointer; b: Pointer);
BEGIN
WITH a”~ DO
X 1T veees

Which one of the two WITH statements is efficient by means of smaller code and
faster execution time?

The key is hidden in the difference between VAR and value parameters.

Advanced Programming Guide
Programming With Better Efficiency
Page PG-28

While a VAR parameter is passed by its address (a pointer to it), a value parameter
is passed directly as its value.

So, you can easily see that the access to a VAR parameter is always indirect,
whereas a value parameter can be accessed directly.

Therefore, we see that the WITH statement around the ‘a® VAR parameter removed
one indirection by replacing the pointer to the pointer to the record by a pointer to
the record. This means that the path to access the value of 'a' is shorter. So, this
statement is efficient.

The other WITH statement, the one around b, does not change anything to the access
path (there is still the access via a pointer to the record), but adds the code needed
to set up the with statement. It might not be much code that is added, but many
times a little bit can easily result in 'guite a bit'.

But there are even worse possibilities:

TYPE
IndianGuru = RECORD
name: STRING; (* possibly too short .. *)
numberOfSupporters: CARDINAL
END:

PROCEDURE PrintGuru{guru: IndianGuru);
BEGIN
WITH guru DO
WriteString(name); Writeln;
WriteCard({numberOfSupporters):
END; (* WITH *)
END PrintGuru;

This sample actually inserted a redirection where there was none before. 'guru' is
now accessed via a pointer to it, preventing the compiler from evaluating the
addresses of the fields of the record. This is worst case, but you will see that this
kind of WITH statements is quite often used for convenience reasons.

Advanced Programming Guide
Programming With Better Efficiency
Page PG-29

The facts brought together:

- WITH statements should be used if they remove indirections by
either pointer accesses or array indexing.

- WITH statements for convenience only may be acceptable as long as
it doesn't come to program time or space critical applications.

- Be careful with constant addresses; the compiler is intelligent
enough to evaluate them in most cases. Do not prevent it from doing
its work to its best...

Section 2. The CASE Statement

The CASE statement can be simulated by IF THEN ELSIF THEN etc.- constructs. In
fact, that was what the compiler did quite a time.

Now, it generates a table consisting of one entry for each number in the range
between the lowest and the highest case label. An extreme (but instructive) example:

CASE i OF
1,2,3: §j := b5;

l 10000: j := 10 + I;
END; (* CASE *)

This innocent little case statement generates 10'000 * TSIZE(ADDRESS) = 20'000
bytes of code for the table only ...

So, be prepared: The statement

IF (i < 4) AND (i >= 0) THEN
j 5;

ELSIF |

j

= 10000 THEN
10 + 1

WM

Advanced Programming Guide
Programming With Better Efficiency
Page PG-30

END;

is MUCH smaller than the case statement, although the case statement is almost
certainly faster than the IF THEN sequence.

NOTE - One CASE statement cannot have more than 256 labels, overall. This is
an implementation restriction. The range covered by these labels is
insignificant to this limitation.

Section 3. Constant Expression Evaluation / Strength Reduction

If you had a careful look at the source of ERATOS.MOD, you certainly discovered,
that there is a multiplication used instead of an addition in the inner loop. We are
not foolish enough to slow down the benchmark by using an unnecessary
multiplication where all the others carefully resort to addition.

Please note the order in that expression:

=0 0% 2;

The compiler recognizes two as a power of two and applies an optimization rule
known as strength reduction. This rule says that instead of multiplying by N, a
power of two, you can use log2(N) shift operations.

So, this multiplication is replaced by a much simpler and faster shift operation.

This rule applies to powers of two only; but in common programming techniques, you
use quite often multiplications by powers of two...

The same goes for addition operations. The compiler can optimize only constants that
follow variables, not the ones being in front of them.

