

Appendix E Data Representations

After allocation, it is possible that the allocator might shift
and expand fields in a word to utilize what would otherwise be
holes in the record. For example, a signed field might be
expanded to use the remainder of a word for faster access, or two
S-bit fields might be allocated a full byte each. The diagrams
below provide graphic �i�l�l�u�s�~�r�a�t�i�o�n�s� of the packing methods. In
each case, a type definition is given, followed by a diagram of
how that type is allocated.

packed record
a: 0 · . 7;
b: char;
c: 0 · . 3;
d: Boolean;
e: 0 • • 3;

�e�~�;�

bit --> 15 13 12 5 4 3 2 1 0
�+�-�-�-�-�-�-�-�-�~�+�-�+�-�-�-�-�-�-�+�-�-�-�+�~�-�-�-�-�-�+� a b c I die +---------+-----------------------+------+---+------+

packed record
a: 0 · . 4095;
b: char;

end;

bit --> 15 11 0
+------------+-----------------------------------+ I extended ••• a I
�+�-�-�-�-�-�-�-�-�-�-�-�-�+�-�~�-�-�-�-�-�-�~�-�-�+�

15 o
+--+
I b I +--+

Pascal Reference Manual Page 135

Data Representations Appendix E

packed
a:
b:

end;

bit -->

record
0
0

· . 63;
• • 63;

15 10 9 4 3 0
+-~----------------+--~---------------+------------+
I a I b I hole 1
+---------~--------+~-----------------+------------+

The record above is allocated as in the above
picture, but will be re-allocated as shown below.

bit --> 15 14 13 8 7 6- 5 o
+------+-~----------------+------+------------------+ I a -I b
+---~--+---------~--------+------+------------------+

packed record
a: -1024 . . +1023;
b: 0 • • 7;

end;

bit --> 15 5 4' 3 2 0
+---~-----------------------------+------+---------+ a I hole I b

+--------------------------~------+------+---------+

In the last example above, the signed subrange field was moved
up to the left hand end of the word and sign extended for faster
access.

Packed arrays are also code consuming, with one exception:
packed array of char is treated as a special case, and the gen­
erated code is compact.

Elements of packed arrays are stored with multiple values in a
byte whenever more than one value can fit in a byte. Elements
are allocated on 1, 2, 4 or 8-bit boundaries. This only happens
when the value requires 4 bits or less. 3-bit values are stored
in 4 bits.

The first value in a packed array is stored in the lowest num­
bered bit position of the lowest addressed (that is, the most
significant) byte. Subsequent values are stored in the next
available higher numbered bit positions in that byte. When the
.first byte is full, the same positions are used in the next

Page 136 Pascal Reference Manual

Appendix E Data Representations

higher addressed byte. Consider the following examples:

var
a: packed array[l •• 12] of boolean1

byte 1 bit 0
+----+----+-~--+----+----+----+----+----+
I a8 I a7 I a6 I as I a4 I a3 I a2 I al I

+----+----+----+----+----+----+----+----+
byte 2
+----+----+----+----+----+----+----+----+
I ..•• Unused ••• ~ I a121 alll alol a9 I
+----+----+----+----+----+----+----+----+
var

b: packed array[3 •• 8] of 0 •• 3;

byte 1 bit 0
+----+----+----+----+----+----+----+----+
I b(6] I b[s] b[4) b[3]
+----+----+----+----+----+-~--+----+----+

. byte 2
+----+----+----+----+----+----+----+----+
I ..•.. Unused •••• I b[8] I b[7] I
+----+----+----+----+----+----+----+----+
var

c: packed array[O . . 2] of 0 . . 7;
or

c: packed array[O ::-2] of 0 . . 15;

byte 1 bit 0
+----+----+----+----+----+----+----+----+

c [1] c[O]
+----+----+----+----+----+----+----+----+
byte 2
+~---+----+----+----+----+----+----+----+ I •••• ~ Unused •••• I e[2] I
+----+----+----+----+----+----+----+----+

E.8 Parameter Passing Mechanism

This Section describes the way in which parameters are passed
in SVS Pascal.

Parameters are passed on the stack. Parameters are pushed onto
the stack in order in which they are declared in procedure and
function declarations.

Pascal Reference Manual Page 137

Data Representations Appendix E

If the callee is not a procedure or fUDction at the global
level, the static link is the last thing pushed onto the stack
before the routine is called.

Upon return from a routine, all parameters are discarded from
the stack. Nothing should be on the stack upon return.

var parameters (call by re£erence) always have a four-byte
pointer to the variable pushed onto the stack.

Value parameters are divided into the three categories of sets,
doubles, and everything else.

': The caller always pushes sets onto the stack. A set which
occupies, one byte is pushed with a move.b instruction. A set
which occupies more storage than one byte is pushed with the
least significant element in the most significant word. Thus the
representatIon of a set on the stack is the same as the represen­
tation in memory.

The caller always pushes doubles onto the stack as well. This
is usually accomplished by two move.l instructions in such a
manner that the representation a double on the stack is the same
as the representation in memory (that is, with the sign bit in
the lowest addressed byte).

Other value parameters are pushed as follows:

• a one-byte value is pushed with a move.b instruction.

• a two-byte value is pushed with a move.w instruction.

• a four-byte value is pushed with a move.l instruction.

• if a value is longer than four bytes, and not a double, the
address of the data is pushed onto the stack and the called
procedure or function copies the data into local storage.

Procedure and function parameters are pushed as follows:

• the address of the procedure or function is pushed onto the
stack.

• the static link is then pushed onto the stack if the procedure
or function is not at the global (outermost) level. If the
procedure or function is global (at the outermost level), the
value Dil(O) is pushed onto the stack instead of the static
link.

Punction results are returned in register DO, or in the case of
a double function in DO and Dl.

Page 138 Pascal Reference Manual

Appendix E Data Representations

E.9 Register Conventions

Registers AO, A1, DO, D1, and D2 are available as scratch
registers. That is, they may be clobbered by a function or
procedure. All other registers must be preserved across calls.
In addition, register A4 and AS must contain their original
values whenever any external routine is called. A4 is used in
addressing external entry points and AS is used to access the
standard input and output, argc and argv, ioresult, etc.

E.10 Limitations On Size of Variables

There is no limitation on the number of bytes allocatable for
variables. However, a maximum of 30R bytes of value parameters
cannot be exceeded. Furthermore, when more than 30R bytes of
variables exist in either- the main program's global scope, or in
any local scope of a procedure or function (but not uDi~ glo­
bals), the largest values will be accessed via a pointer, result­
ing in somewhat slower code. This mechanism is transparent to
the user, so that no changes to source code are required.

Global variables in units are accessed via 32-bit absolute
addressing modes. Therefore the pointer mechanism does not apply:
to ani~s with more than 30X bytes of globals.

The maximum size of a record variable is 32K bytes.

There is no limitation on the size of variables which can be
allocated by the NEW procedure.

E.ll Compiler Generated Linker Names

This section describes the manner in which the Pascal compiler
generates names of local and global procedures so that the Linker
can resolve external references at link time.

Procedures which are global (or external) are given the names
which the user assigns to them. The compiler converts all such
names to upper case, and truncates them to eight characters in
length.

Procedures which are local (not visible in the global scope)
are assigned names of the form:

$nnn

where 'nnn' is a decimal number. The numbers may possibly have
trailing spaces. Procedures of the same name but in different
scopes have different names. In other words, all local names in
a given compilation unit are unique.

Pascal Reference Manual Page 139

Data Representations Appendix E

When the linker or librarian sees a collection of compiled
units, the local names may be renumbered, but the actual name
that the user assigned to the procedures are carried along with
the number.

Page 140 Pascal Reference Manual

Appendix F Operating the SVS Pascal System

Appendix P - Operating the SVS Pascal Systea

This appendix will describe·those characteristics of the SVS
Pascal system which are similar among the various environments in
which the system operates. The appendix which follows this one
describes the implementation specific details of the Pascal sys­
tem under your operating system. The information in this appen­
dix describes the Pascal system in the form it is released by
SVS. Some of· the vendors of the system provide additional utili­
ties which can used in conjunction with SVS Pascal and which may
alter the appearance of the system.

F.l System Components

In order to most effectively utilize the SVS Pascal system, it
is nec~~sary to understand the function and operation of its
various components. In all environments a completely straight
forward procedure is provided for compiling and executing simple
Pascal programs (see next appendix). The information provided
here, will only be necessary for more complicated situations
involving separate compilation and multiple source languages.

F.l.l Compiler Front End

Pascal source programs (actually Pascal compilation units) are
accepted by the compiler front end, syntax checked, and an inter­
mediate representation of the program is written to a file. This
file is passed to the code generator which generates object code.
The input source program may -include- other files (see Chapter
9). In addition to the input source file, the Pascal compiler
front end accepts certain directives from the command line, which
are described in the ftCommand Line Directives and Compiler
Options· section of this appendix.

Input files to the Pascal front end generally are files with
names which end in -.pas ft , although this differs among operating
environments. The output file from the Pascal compiler front end
is an intermediate representation of the program which is placed
in a file which generally ends in ft.ift. "There is virtually noth-
ing which can be done with this ft.ift file except provide it as
input to the code generator.

Pascal Reference Manual Page 141

Operating the SVS Pascal System

F.l.2 Code Generator

Appendix F

.The code generator for the Pascal system accepts as input the
ft.ift file produced by the front end and generates linkable object
code in a file with a name which generally ends in ".obj".

The same code generator is utilized in compiling SVS Pascal,
SVS PO~, and SVS C and the resulting ".obj" files are link­
able providing the applicable rules are followed.

F.l.3 Linker

A utility is provided with SVS Pascal for linking ".obj" files
with each other and with run time libraries which are part of the
language system. The linker is highly specific to the operating
environment and its operation is described in detail in the fol­
lowing appendix. There is, however, certain general information
which applies to all of the linkers.

Each linker accepts as inputs ".obj" files and produces an out­
put which is acceptable to the operating system as an object
file. In some operating environments, the linker's output file
is further linkable in the target environment with object code
generated by the operating system assembler, etc. In all cases,
the linker may be run only once per executable image. The input
to the linker must contain exactly one main program but may con­
tain many object files derived from units.

F.l.4 Libraries

Object files in ".obj" format mayor may not be libraries. The
result of a run of the code generator is an ".obj" which is not a
library, although it is possible that such a file contains object
code with corresponds to many subroutines. The main difference
between ".obj" files which are libraries and those which are not
libraries is that the linker includes all of the object code from
non-library input files but only that object code whi~h is refer­
enced from library input files. The determination of what is
referenced is made based on unresolved external code references
in previous input files to the linker. Therefore the order that
files are presented to the linker is important.

When linking Pascal programs, the run time library provided
with the system, paslib.obj, must be the last input file to the
linker.

F.l.S Error Messages

The Pascal system contains a file of compile time error mes­
sages. If this file is given the appropriate name, the compiler

Page 142 Pascal Reference Manual

Appendix F Operating the SVS Pascal System

will generate English error messages along with error numbers'.
If not, the compiler will only give error numbers. The name of
this file differs from one implementation to another and can be
found by referring to the following appendix.

P.2 Command Line Directives and Compiler OPtions

The Pascal compiler front end is invoked to compile a source
file named ·prog.pas· (other. file name endings required on other
systems) with a command line of the form:

pascal prog.pas {options ••• }

Any number of command line options may appear and they may appear
in any order. The possible command line options are:

+q -q

+p -p

+f -£

-lfname

-efname

-ifname

Show more (-q) or less (+q) information on the
progress of the compile to the user. The default
setting varies among different implementations.

Prompt (+p) or don't prompt (-p) to the standard
input in the case of a compile time error. The
default setting varies among different implemen­
tations. Prompting mode is useful so that error
messages do not fly off CRT screens but is awk­
ward when compiling in background mode.

Generate code for the Sky floating point hardware
board (+f) or generate code for software floating
point (-f). This option is only enabled in sys­
tems which support the Sky board and will result
in an error if not enabled. The default is -f,
no floating point hardware. Note: If the Sky
floating point hardware interface is to be used,
the entire program must be compiled with the +f
flag set and·the resulting object code must be
linked with sky.paslib.obj instead of paslib.obj.

Create a listing file of the source program in
the file named fname.

Place a summary of the compile time errors on
file named fname.

Name the "~i" file fname. If this option is not
provided, the ".i" file when compiling a source
program named prog.pas is named prog.i.

Under certain operating systems the code generator is directly
invoked by the Pascal compiler front end. In this case, there is
an additional command line option.

Pascal Reference Manual . Page 143

Operating the SVS Pascal System Appendix F

-of name Name the w.obj" file fname. If this option is
not provided, the w.obj" file when compiling a
source program named prog.pas is named prog.obj.

Onder systems in which the code generator is not directly
invoked by the Pascal compiler front end, the code generator is
invoked using a command of the form:

code prog.i {optionalfname}

where leaving off the optional file name results in an output
file named prog.obj. If the optional file name is provided, the
output file is named optionalfname.

, See the appendix which follows for a description of command
line arguments" and options related to the linker.

F.3 Linking Programs which Utilize Pascal and FORTRAN

There are certain rules which must be observed by programmers
wishing to combine object code compiled under more than one
language processor. Throughout the following discussion, Pascal,
PO~, and C refer to the SVS implementations of these
languages.

F.3.l What Language must Supply the Main Program

In all cases in which PO~ code is present, the main program
must be PO~. In the case where Pascal and C are to be
present, either language may supply the main program. If the C
system is not SVS C, then the main program must be Pascal.

P.3.2 Referring to the Command Line Arguments

In all cases in which the command line arguments are to be
referenced from· C, C must provide the main program. This is a
consequence of the fact that command line arguments are "parame­
ters" to the C main routine. Command line arguments are avail­
able from Pascal and PO~ regardless of which language pro-
vides the main program. .

F.3.3 Dynamic Memory Allocation and Deallocation

A program may utilize the C library memory allocation and deal­
location package (malloc, free, etc.) providing that Pascal com­
ponents of the program do not call release. Similarly, Pascal
components should not call release if PO~ components perform­
ing any I/O are present. If the C system is not SVS C, then the
C routines ~ ~ utilize any dynamic memory allocation or

Page 144 Pascal Reference Manual

Appendix F Operating the SVS Pascal System

deallocation directly or through the operating system run time
library.

F.3.4 Parameter Conventions

The calling convention in C is such that parameters are pushed
in "reverse" order from the order in which they appear and the
calling routine is responsible for popping parameters off the
stack after the call returns. Pascal and PO~ push parameters
in order and the exit code of the called routines is responsible
for popping off its parameters. Pascal contains a "cexternal"
declaration (similar to Pascal "external") which generates calls
to C routines in which the parameters are popped off at the cal­
ling site after the subroutine returns. The parameters must
appear in reverse order in the Pascal call as compared to the
order expected by C. There is no direct language support for
calling C from PO~ or Pascal and PO~· from C, but parame­
terless routines or assembly language interfacing routines can be
utilized for these purposes. It is often easiest to go through
Pascal when calling C from PO~.

F.3.4.l .Calling C from Pascal

The Pascal program should contain a cexternal declaration with
all parameters four bytes in length (except floating point which
should .be double precision). Addresses may be passed by specify­
ing the parameters to be var parameters. The following declara­
tion in Pascal

function cfunct(i,j: longint; d: double): longintj cexternal;

can be used to call the C function

cfunct(d,j,i)
int i,j;
double d;
{
if (d == 0.0) return{i+j); else return(i-j)1
}

No assembly language is necessary to link these routines. Note:
on some operating systems the C system prepends underscores to
external names and the Pascal declaration would have to be for a
function named cfunct rather than a function named cfunct.

F.3.4.2 Calling Pascal from C

There is no way to tell the C system that an external reference
is to a non C routine. Therefore, using the types of the vari­
ables from the previous example, a C call of the form

Pascal Reference Manual Page 145

Operating the SVS Pascal System Appendix F

i = pasfuric(d,j,i)1

would require an assembly language ·wrapper· of the form

• text
.globl
.globl

pasfunc:
movl
jsr
subl
movl
rts
.bss

savera: . - .

pasfunc
PASFUNC

sp@+,savera
PASFUNC
'16,sp
savera,-sp@

+ 4

to call a ,ascal function declared with the header

function pasfunct(i,j: longint; d: double): longint;

The important items to note are: Pascal entry point is in upper
case, C external reference is in the same case as the programmer
specified. The .globl for the C entry point may need a prepended
underscore on some operating systems. The ·wrapper" will not
work if ·the interlanguage call is recursive. The C calling site
expects to pop off 16 bytes of parameters after the call returns,
but the Pascal function has already popped off the parameters.
Therefore, the ·wrapper· decrements the stack pointer by the
amount the calling site expects to pop off.

The exact syntax of the assembly language will vary from system
to system. In general the object code for ·wrapper·s is linked
into the executable program at the last linking step of the com­
pile. Normally, a wrapper is required for each C to Pascal call.

The above procedure will not work with C systems other than SVS
C -secause other C systems expect ciIIid sUbroutines to preserve
different registers than Pasca1 functions preserve. In this
case, the "wrapper· must be enhanced to preserve the registers
required by the calling C language subroutine.

F.3.4.3 Calling PO~ from Pascal

It is straight forward to call PORTBAN subroutines from Pascal.
The called routines should be declared to be external in the
Pascal compilation with formal parameter declarations which match
PORTBAN parameter conventions. In particular, Pascal var parame­
ters will match the PORTBAN call by reference convention. If the
receiving PORTBAN routine expects a character parameter, it will
be necessary to pass the length of the packed array of char as an
explicit two byte value parameter (as described in the parameter
passing section of the PORTBAN reference manual). Note: Pascal

Page 146 Pascal Reference Manual

Appendix F Operating the SVS Pascal System

strings are not compatible with the PO~ character datatype.

F.3.4.4 Calling Pascal from PO~

When calling an external routine from PO~, it is merely
invoked without any special declaration. This called routine may
have been written in Pascal. In the event that it is, the rou­
tine should be written with formal parameters declared in the
manner which is consistent with what PO~ would expect from a
receiving routine written in PO~. Pascal formal parameter
declarations are adaquate for expressing all of the interfaces
expected by PO~ calling sites.

F.3.S Run Time Libraries

When linking multiple languages, the last input file provided
to the linker must always be paslib.obj. Immediately preceding
paslib.obj must be clib.obj and ftnlib.obj, in either order. The
former must be present if C is present and the latter must be
supplied if PO~ is contained in the program being linked.

F.3.6 Upper and Lower Case External Naming Conventions

It is the convention in Pascal and PO~ to upper case all
external names except routine names which are declared cexte~nal
in Pascal. These names are passed directly to the linker as they
appeared in the eexternal declaration. In C, upper and lower
case letters are distinct, so it is the convention to pass
letters directly through as they were supplied by the programmer.
For interfacing purposes, use upper case names in C, or use
cexternal in Pascal, or use assembly language to bridge the nam­
ing conventions.

F.3.7 Prepended Underscore to Externai Names

Some of the operating system environments prepend the under­
score character to C external names. Pascal cexternal names do
not get underscore prepended to them in any environment, but
Pascal accepts underscore as a letter so that the user may gen­
erate Pascal cexternals with leading underscores.

Pascal Reference Manual Page 147

Operating the SVS Pascal System Appendix F

Page 148 Pascal Reference Manual

Appendix G CPM Operating System Specific Information

Appendix G - CPR Operating Systea Specific Info~tion

Although the SVS Pascal system appears to be almost identical
under a wide variety of operating systems, there are minor
differences, particularly related to the linker and in operating
procedures, among the various environments. This appendix will
provide the implementation dependent details related to SVS
Pascal running under the CPM operating system.

G.l Compiling a Simple Program

The instructions provided here for compiling and linking a
Pascal program reflect the system as it is released by SVS. Some
vendors of the system provide additional utilities for sequencing
compiles for which there may be separate documentation.

Appendix F of this manual described in some detail the com­
ponents of the SVS Pasca1 system. For most Pascal programs, the
following simple procedure will be completely adequate for
sequencing a compile:

Create a ·submit file· called P.SUB with the following commands:

pascal $l.pas
code $l.i
ulinker -1 $1.0 $l.obj paslib.obj
era $l.obj
1068 -s -0 $1.68k -tl0100 s.o $1.0 clib

To compile a Pascal program in a file named prog.pas, execute:

P prog

The Pasca1 program and the submit file can be created using the
system text ~ditor. The submit file assumes that pascal.68k (the
Pascal compiler front end), code.68k (the code generator), and
ulinker.68k (the linker) reside in the system in directories from
which they can be executed. The submit file also assumes that
paslib.obj is the correct pathname for accessing this file.
These naaes will most likely have to be changed to reflect the
location of these files on your system.

The lines of the submit file do the following: The first two
lines run the front end and code generator on files whose names

Pascal Reference Manual Page 149

CPM Operating System Specific Information Appendix G

are derived from the cOJDIDand line in which . the submit file is
invoked. The linker is run (in its simplest form, see below for
more details) with -1 inhibiting a linkmap listing file, with
output file $1.0, and with two input files, including the SVS
supplied library. Ulinker produces a file which is then linked
to those CPM system calls which are utilized by the program in
the 1068 step (which invokes the CPM system linker).

G.2 Error Message File

SVS Pascal includes a file called pascterr.src which should be
placed in either the a: or b: drive. This will allow the com­
piler to display English messages for errors which it detects.

G.3 Ulinker

Onder CPM, ulinker is the SVS linker. The general operation of
the linker is described in Appendix F. This section will
describe in detail the modes of operation of ulinker and its load
map listing option.

G.3.l Ulinker Inputs

Olinker links object code in ·.obj" format, including
libraries. In addition, ulinker accepts input from the command
line or interactively as described below.

G.3.2 Ulinker Outputs

Olinker creates partially linked object code in CPM ".0" format
as its primary output. Optionally, ulinker can produce a listing
file which is a load map of global entry points in the created
".0" file. The form of this map and information contained in it
is best described by the following example with subsequent expla­
nations:

Example 2! Ulinker Listing Ii!!

Linking segment I I (670)
MC68000 CPM Object Code Formatter

Pile: prog.o

Memory map for segment I

COMPUTES - COMPUTES
FAIRLYSI - PAIRLYSI
$ START - $START

Page 150

OOOOlE
000054
000054

05-oct-83

Pascal Reference Manual

Appendix G CPM Operating System Specific Information

IP830701 - IP830701
'TERM -, '!'BRM
'-END - '-END
I-WRS - '-WRS
II MUL4 - IY MDL4
I I-MOD 4 - II-MOD4
II-DIV4 - II-DIV4

No: Segment: Size:
O. I • 00029E

Start Lac - 000054
Code Size - 00029£
Global Size - 000006

000082
OOOlEO
0001E2
0001E6
OOOlEC
00021C
000228

Explanation of Ulinker Listing !!!!

The listing file was generated from the following Pasca1 program:

program fairlysimple;
var i: integer; li: longint;

procedure computesome;
begin
li :- (Ii * li) mod 99999;
li :- li div 17;
end;

begin
li :- 2;
for i := 1 to 100 do

computesome;
end.

The segment named by 8 blanks had 670 (decimal) bytes in it.
Under CPM there is no reason for programmers to explicitly deal
with segments, since u1inker handles this automatically.

There were ten entry points in the linked files. Eight of these
were pulled out of the library and two are recognizable as user
function names. The addresses of these entry points are given in
hex and are text area relative, but will be further relocated ~
the !2!! step of the compilation.~he relative addresses (dis­
tance between them) will remain intact through the 1068 step.

There would be a data areas shown associated with each of the
UDi~s in the link, mapped to the data or bss area depending upon
whether the area is initialized at compile time (which is possi­
ble using PO~ block data and named common). Sizes and loca­
tions of these data area listings are in hex and relative to the
start of the data or bss area as appropriate.

Pascal Reference Manual Page 151

CPM Operating System Specific Information

G.3.3 Running Ulinker from the Command Line"

The command line form of running ulinker is:

Appendix G

ulinker ~istfname outputfname inputfname {inputfname ••• }

where the optional listing file is created on a file named
listfname providing that listfname is not equal to -1 (no listing
file to be created directive). The command line arguments are
poSitional. No file name suffixes are enforced by ulinker in
this mode so complete file names must be entered.

G.3.4 Running Ulinker Interactively

It is often not convenient or not possible to have a command
line which is long enough to have all of the input files listed.
In this event, ulinker can be run interactive. Bxecute ulinker
without any command line arguments and it prompts:

Listing file -

Any file name provided creates the listing file. Bnter just
return to suppress the optional listing file. The next prompt
is:

Output file [.0) -

Ulinker requires an output file. If the file name provided does
not end in w.ow, ulinker will append this file name extension
onto the name which is input. Following this prompt, ulinker
will repeatedly prompt:

Input file [.obj) -

for its input files, until a plain return is typed, indicating
that the input file list is completed. Ulinker will append the
w.obj- suffix onto input file names if it is not supplied by the
user. Running in this mode, there is no limit on the number of
input files which ulinker can process.

G.3.S Running Olinker with Standard Input Redirected

With many input files, it is most convenient to operate ulinker
in its interactive mode with standard input redirected. For
example, run ulinker as follows:

ulinker <cad

where the file cad contains a line for the listing file name, a
line for the output file name, lines for the input file names,
and a blank line to terminate the input file list.

Page 152 Pascal Reference Manual

Appendix G CPM Operating System Specific Information

G.3.S.l Symbol Table Information Placed in Output Pile

Utilizing the CPM utility nm68 it is possible to examine the
symbol table information placed in the output file by ulinker.
In general, all entry points which are not local to another pro­
cedure (a situation which only occurs in Pascal) are placed into
the ·.0· file symbol table. All entry points appear in the
ulinker listing file, including those which are Pascal local pro­
cedures. There are also symbol table entries for unresolved
external references and for the program entry point (named main
under CPM). -

G.3.6 Treatment of Unresolved External References

Unresolved external references are passed through into the out­
put file for potential linking in the 1068 step of the compile.
In the event that these references are not resolved at that
stage, an error message is generated then.

G.3.7 Segments

Under some operating systems other than CPM, the SVS Pascal
system contains a meaningful object code concept referred to as
segments. Onder CPM, there are segments in the object code, but
they are not semantically meaningful. Olinker automatically
creates segments as needed and there is no reason for the user to
do anything explicitly about creating and/or naming segments.

G.3.8 Errors Detected by Olinker

Most of the error messages which come out of ulinker are com­
pletely self explanatory. The error message:

*** In data area named ABC
*** at offset 999 bytes into that data area
*** Patal Error - overlapping data initialization

is caused by user programs initializing the same location in the
named data area more than once. The error message:

*** Error - Double defined: ABC

is caused by the same entry point name being used in more than
one input file. Only 8 characters are significant for the
linker. The error message:

*** Error - Double defined unit

is caused by linking more than one unit with the same name. The
link name for Pascal units begins and ends in slashes and

Pascal Reference Manual Page 153

CPM Operating System Specific Information Appendix G

contains the six initial characters of the Pascal unit user name
between the slashes. This facilitates initializing Pascal unit
globals using PORTRAN named common and data statements. One
consequence of this link naming convention is that only six char­
acters of the user unit name are utilized for resolving naming
conflicts. The error message:

*** Error - Multiple start locations

is caused by having more than one main program among the input
files.

G.4 Linking to CPM Assembly Code

It is normal for the output of ulinker to contain unresolved
external references to CPM system calls (such as o~enb, close,
and write). These are resolved by the 1068 link1ng seep by
using the operating system default library of CPM object code.
The user may do the same kind of linking to CPM assembly code by
providing the assembly language source as an additional argument
to the 1068 compilation step which will automatically invoke the
operating system assembler.

One limitation on code which is linked in with code generated
by the SVS languages is that no CPM system calls on malloc, free,
sbrk, or related routines (directly, or through other linked in
routines) may be used. The SVS languages handle the CPM break
area of memory, including versions of malloc and free in the SVS
C library, in a manner which is not fully compatible with the CPM
routines.

User's should also beware of differing floating point formats.
Some of the CPM systems do not use IEEE format floating point.
In this event, passing floating point values will result in
strange results.

It is not guaranteed that I/O will work as expected across
language boundaries, particularly with respect to object code
generated by non SVS systems.

Any code linked into programs generated by the SVS languages
must obey the register and calling conventions assumed by the
system. In particular, all called routines must preserve regis­
ters D3 through D7 and A2 through A6. More details on the cal­
ling conventions are provided in the appendix on data representa­
tions.

G.S Argc and Argv

Under CPM, the name of the program is the first argument in the
argv list of the invoked program, that is argv[l)A. Argc is

Page 154 Pascal Reference Manual

Appendix G CPM Operating System Specific Information

always at least 1. The first user supplied command line argument
is argv[2]A. This is sometimes confusing for CPM programmers who
are aore used to seeing the name of the invoked program as the
zero'th argv in the C programming language and the first user
supplied command line argument as the one referenced using array
index 1 on the argv array. The Pascal numbering scheme is con­
sistent with the fact that argv is a one origin indexed array.

G.6 Features not Implemented Under CPM

The following features of SVS Pascal are not implemented under
CPM: call and unit I/O (such as unitread, unitwrite, etc.).

Pascal Reference Manual Page 155

CPM Operating System Specific Information Appendix G

Page 156 Pascal Reference Manual

