
I-~
DIGITAL

RESEARCH"

Concurrent CP/M-86 TM

Operating System

Programmer's Utilities Guide

COPYRIGHT

Copyright © 1983 by Digital Research. All rights reserved. No part of this publication
may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated
into any language or computer language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written
permission of DigimlResearch, Post Office Box 579, Pacific Grove, California, 93950.

DISCLAIMER

Digital Research makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or fitness for
any particular purpose. Further, Digital Research reserves the right to revise this publi-
cation and to make changes from time to time in the content hereof without obligation
of Digital Research to notify any person of such revision or changes.

TRADEMARKS

CP/M is a reg~tered trademark of Digital Research. ASM-86, Concurrent CP/M-86,
DDT-86, and MAC are trademarks of Digital Research. Intel is a registered trademark
of Intel Corporation. MCS-86 is a trademark of Intel Corporation. ZS0 is a registered
trademark of Zilog, Inc. IBM Personal Computer is a tradename of International
Business Machines.

The Concurrent CP/M-86 Programmer's Utilities Guide was prepared using the
Digital Research TEX Text Formatter and printed in the United States of America.

First Edition: March 1983

Foreword

The Concurrent CPIM-86 TM Programmer's Utilities Guide documents the 8088 and
8086 assembly language instruction set, rules for use of the Digital Research ASM-86 TM

assembler, and rules for use of the Digital Research dynamic debugging tool, DDT-86".

Section 1 contains an introduction to the Digital Research assembler, ASM-86, and
the various options that can be used with it. Through one of these options, ASM-86 can
generate 8086 machine code in either Intel ® or Digital Research format. Appendix A
describes these formats.

Section 2 discusses the elements of ASM-86 assembly language. It defines the ASM-86
character set, constants, variables, identifiers, operators, expressions, and statements.

Section 3 describes the ASM-86 housekeeping functions, such as conditional assem-
bly, multiple source file inclusion, and control of the listing printout format.

Section 4 summarizes the 8086 instruction mnemonics accepted by ASM-86. These
mnemonics are the same as those used by the Intel assembler, except for four instructions:
the intrasegment short jump, intersegrnent jump, return, and call instructions. Appendix B
summarizes these differences.

Section 5 discusses the Code-macro facilities of ASM-86, including Code-macro
definition, specifiers, and modifiers, and nine special Code-macro directives. This infor-
mation is also summarized in Appendix G.

Section 6 discusses DDT-86, the Dynamic Debugging Tool that allows the user to
test and debug programs in the 8086 environment. The section includes a sample
debugging section.

iii

Concurrent CP/M-86 is supported and documented through four manuals:

• The Concurrent CP/M-86 User's Guide documents the user's interface to Con-
current CP/M-86, explaining the various features used to execute applications
programs and Digital Research utility programs.

• The Concurrent CP/M-86 Programmer's Re[erenee Guide documents the appli-
cations programmer's inter/ace to Concurrent CP/M-86, explaining the internal
file structure and system entry points, information essential to create applications
programs that run/n the Concurrent CP/M-86 environment.

• The Concurrent CP/M-86 Programmer's Utilities Guide documents the Digital
Research utility programs programmers use to write, debug, and verify applica-
tions programs written for the Concurrent CP/M-86 environment.

• The Concurrent CP/M-86 System Guide documents the internal, hardware-
dependent structures of Concurrent CP/M-86.

iv

Table of Contents

1 In t roduc t ion m ASM-86

2

1.1 Assembler Opera t ion . 1-1
1.2 Opt iona l Run- t ime Parameters . 1-4
1.3 Ending ASM-86 . 1-5

2.1
2 .2
2.3
2 .4

Elements of ASM-86 Assembly Language

ASM-86 Charac t e r Set . 2-1
Tokens a n d Separators . 2-1
Delimiters 2-1

Cons tan t s 2-3
2.4.1 Numer i c Cons tan t s . 2-3
2.4.2 Charac t e r Strings . 2-4

2.5 Identifiers 2-4
2.5.1 Keywords . 2-5
2.5.2 Symbols an d The i r At t r ibutes 2-6

2 .6 Opera to r s 2-8
2.6.1 O p e r a t o r Examples . 2-12
2.6.2 O p e r a t o r Precedence . 2-14
Expressions . 2-16
Sta tements 2-16

2 .7
2 .8

3 Assembler D/rectives

3.1 In t roduc t ion 3-1
3 .2 Segment S tar t Directives . 3-1

3.2.1 T h e CSEG Directive . 3-2
3.2.2 T h e DSEG Directive . 3-2
3.2.3 T h e SSEG Directive . 3-3
3.2.4 T h e ESEG Directive . 3-3

3.3 The O R G Directive . 3-4
3 .4 The IF and ENDIF Directives . 3-4
3 .5 The INCLUDE Directive . 3-5
3.6 The END Directive . 3-5
3 .7 The EQU Directive . 3-5
3.8 The DB Directive ~ . 3-6
3 .9 The D W Directive . 3-7
3 .10 The DD Directive . 3-8

Table of Contents (continued)

3.11 The RS Directive . 3-8
3 .12 The RB Directive . 3-9
3.13 The R W Directive . 3-9
3 .14 The TITLE Directive . 3-9
3.15 The PAGESIZE Directive . 3-10
3.16 The P A G E W I D T H Directive . 3-10
3 .17 The EJECT Directive . 3-10
3.18 The S I M F O R M Directive . 3-10
3.19 The NOLIST and LIST Directives 3-11
3.20 The IFLIST and NOIFLIST Directives 3-11

The ASM-86 Ins t ruc t ion Set

4.1 In t roduct ion 4-1
4.2 Da ta Transfer Ins t ruct ions . 4-3
4.3 Ari thmetic , Logical, and Shift Instruct ions 4-5
4.4 String Inst ruct ions . 4-10
4.5 Cont ro l Transfer Ins t ruct ions . 4-12
4.6 Processor Cont ro l Instruct ions . 4-16
4 .7 M n e m o n i c Differences . 4-18

5 Code-macro Facilit/es

5.1 In t roduc t ion to Code-macros . 5-1
5.2 Specifiers 5-2
5.3 Modifiers 5-4
5.4 Range Specifiers . 5-4
5.5 ~de-trm~o Directives . 5-5

5.5.1 SEGFIX . 5-5
5.5.2 N O S E G F I X . 5-5
5.5.3 M O D R M . 5-6
5.5.4 RELB and RELW . 5-7
5.5.5 DB, D W and DD . 5-8
5.5.6 DBIT . 5-8

vi

Table of Contents (continued)

DDT-86

6.1 DDT-86 Operation . 6-1
6.1.1 Starting DDT-86 . 6-1
6.1.2 DDT-86 Command Conventions 6-1
6.1.3 Specifying a 20-Bit Address 6-3
6.1.4 Terminating DDT-86 . 6-3
6.1.5 DDT-86 Operation with Interrupts 6-3

6.2 DDT-86 Commands . 6-4
6.2.1 The A (Assemble) Command 6-4
6.2.2 The B (Block Compare) Command 6-4
6.2.3 The D (Display) Command 6-5
6.2.4 The E (Load for Execution) Command 6-6
6.2.5 The F (Fill) Command . 6-6
6.2.6 The G (Go) Command . 6-7
6.2.7 The H (Hexadecimal Math) Command 6-8
6.2.8 The I (Input Command Tail) Command 6-8
6.2.9 The L (List) Command . 6-8
6.2.10 The M (Move) Command . 6-9
6.2.11 The QI, QO (Query I/O) Commands 6-9
6.2.12 The R (Read) Command 6-10
6.2.13 The S (Set) Command . 6-11
6.2.14 The SR (Search) Command 6-12
6.2.15 The T (Trace) Command 6-12
6.2.16 The U (Untrace) Command 6-13
6.2.17 The V (Value) Command 6-13
6.2.18 The W (Write) Command 6-14
6.2.19 The X (Examine CPU State) Command 6-14

6.3 Default Segment Values . 6-16
6.4 Assembly Language Syntax for A and L Commands 6-18
6.5 DDT-86 Sample Session . 6-19

vii

Table of Contents (continued)

Appendixes
A Starting ASM-86 A-1

B Mnemonic D i f f e r e n ~ from the Intel Assembler 13-1

C ASM-86 Hexadecimal Output Format . C-1

D Rmm-ved Words D-1

E ASM-86 ~ Summmry . FA

F Sampt~ Frustum AI~.AS6 . r ~ l

G Caxle-macro 13q£mition Syntax . G-1

H ASM-86 Error Mintages . H-1

I DDT-86 Error Meuagm . I-1

viii

Table of Contents (continued)

Tables

1-1. Pun-time Parameter Summary . 1-4
1-2. Run-time Paramet~ Examples . 1-5

2-1. Separators and Delimiters . 2-2
2-2. Radix Indicators for Constants . 2-3
2-3. String Constant Examples . 2-4
2-4. Register Keywords . 2-6
2-5. ASM-86 Operators . 2-9
2-6. Precedence of Operations in ASM-86 2-15

4-1.
4-2.
4-3.
4-4.
4-5.
4-6.
4-7.
4-8.
4-9.
4-10.
4-11.

Operand Type Symbols . 4-1
Flag Reghter Symbols . 4-3
Data Transfer Instructions . 4-3
Effects of Arithmetic Instructions on Flags 4-5
Arithmetic Instructions . 4-6
Logical and Shift Instructions . 4-8
String Instructions . 4-10
Prefix Instructions . 4-12
Control Transfer Instructions . 4-13
Processor Control Instructions . 4-16
Mnemonic Differences . 4-18

5-1. Code-macro Operand Specifiers . 5-3
5-2. Code-macro Operand Modifiers . 5-2

6-1. DDT-86 Command Summary . 6-2
6-2. Flag Name Abbreviations . 6-15
6-3. DDT-86 Default Segment Values 6-17

ix

Table of Contents (continued)

Tables
A-1. Parameter Types and Devices . A-1
A-2. Parameter Types . A-2
A-3. Device Types . A-2
A-4. Invocation Examples . A-3

I~-1. Mnemonic Differences . B-1

C-1. Hexadecimal Record Contents . C-1
C-2. Hexadecimal Record Formats . C-2
C-3. Segment Record Types . C-3

D-1. Keywords or Reserved Words . D-1

E-1. ASM-86 Instruction Summary . E-1

H-1. ASM-86 Diagnostic Error Messages H-1

I-1. DDT-86 Error Messages . I-1

Figure

1-1. ASM-86 Source and Object Hies . 1-1

Lisfin 8

F-1. Sample Program APPF.A86 . F-1

Section 1
Introduction to ASM-86

1.1 Assembler Operation

ASM-86 processes an 8086 assembly language source file in three passes and produces
three output files, including an 8086 machine language file in hexadecimal format. This
object file can be in either Intel or Digital Research hex formats, which are described in
Appendix C. ASM-86 is shipped in two forms: an 8086 cross-assembler designed to run
under CP/M ® on the Inte18080 or the Zilog ZS0 ® based system, and an 8086 assembler
desisned to run under Concurrent CP/M-86 on an lntel 8086 or 8088 based system.
ASM-86 typically produces three output files from one input file as shown in Figure 1 - 1:

I ! soo.oE ,sM- I

~ ~ 1 LIST FILE I

HEX FILE I

filename.A86 - contains source
filename.LST - contains listing
filename.H86 - contains assembled program in

hexadecimal format
filename.SYM - contains all user-defined symbols

Figure 1-1. ASM-86 Source and Object Files

m DIGITAL RESEARCH ~"

1-1

1.1 AJN~Ixr (~doa ~ t CIP/M-86 Ut[lifim Guide

Figure 1-1 also lists ASM-86 filetypes. ASM-86 accepts a source file with any three-
letter extendoo, but if the filetype is omitted from the starting command, ASM-86 looks
for the spediied filename with the filetype .A86 in the directory. If the file has a filetype
other than .A86 or has no filetype at all, ASM-86 returns an error message.

The other filetypes listed in Figure 1-1 identify ASM-86 output files. The .LST file
contains the assembly language listing with any error messages. The .H86 file contains
the machine language program in either Digital Research or Intel hexadecimal format.
The .SYM file lists any user-defined symboh.

Start ASM-86 by entering a command of the following form:

ASM86 source filespec [$ parameters]

Section 1.2 explains the optional parameters. Specify the source file using the foUow-
ing form:

[d:] filenarne [.type]

where

[d'] is an opdonal valid drive letter specifying the source file's location.
Not needed if source is on current drive.

filename is a valid CP/M filename of I m 8 characters.

[.type] is an optional valid filetype of I m 3 characters (usually .A86).

Some examples of valid ASM-86 commands are

A>ASM86 B : B I O S 8 8
A>ASMS8 B I O S 8 8 , A B 8
A>ASM88 D:TEST

SFI AA HO PB SB

Note that if you try to assemble an empty source file, ASM-86 generates empty list, hex,
and symbol files.

m DIGITAL RESEARCH TM

1-2

Concurrmt CP/M-86 Utilities Guide 1.x Jwumb= ~

Once invoked, ASM-86 responds with the message:

CP/M 8086 ASSEMBLER VER x.x

where x.x is the ASM-86 version number. ASM-86 then attempts to open the source
file. If the file does not exist on the designated drive or does not have the correct filetype
as described above, the assembler displays the memage:

NO F I L E

If an invalid parameter is given in the optional parameter list, ASM-86 displays the
m e s s a g e :

PARANETER ERROR

After opening the source, the assembler creates the output files. Usually these are
placed on the current disk drive, but they can be redirected by optional pararneters or
by a drive specification in the source filename. In the latter case, ASM-86 directs the
output files to the drive specified in the source tilename.

During assembly, ASM-86 halts if an error condition, such as disk full or symbol table
overflow, is detected. When ASM-86 detects an error in the source file, it places an
error-message fine in the listing file in front of the line containing the error. Each error
message has a number and gives a brief explanation of the error. Appendix H lists
ASM-86 error messages. When the assembly is complete, ASM-86 displays the message:

END OF ASSEMBLY. NUMBER OF ERRORS: n

i DIGrI'AL RESEARCH ~

1-3

1.20l~onal Rua-4im¢ Parametcr~ Concanmt CP/M-86 UtBitim Guide

1.2 Op t iona l Run- t ime Paramete rs

The dollar-sign character, $, flags an optional string of run-time parameters. A param-
eter is a single letter followed by a single-letter device name specification. Table 1-1 lists
the parameters.

Table 1-1. Run-time Parameter Summary

A source file device A, B, C, ... P
H hex output file device A ... P, X, Y, Z
P list file device A... P, X, Y, Z
S symbol file device A... P, X, Y, Z
F format ofhex output file I,D

AU parameters are optional and can be entered in the command line in any order.
Enter the dollar sign ordy once at the beginning of the parameter string. Spaces can
separate parameters but are not required. No space is permit~l, however, between a
parameter and its device name.

A device name must follow parameters A, I-I, P, and S. The devices are labeled

A,B,C PorX, Y ,Z

Device names A through P, respectively, specify disk drives A through P. X specifies
the user console (CON:), Y specifies the line printer (LST:), and Z suppresses output
(NUL:).

If output is directed m the console, it can be temporarily stopped at any time by
entering a CTRL-S. Restart the output by entering a second CTRL-S or any other
character.

I DIGITAL KI~..A~CH ~
1-4

Concur ren t CPIM-86 Utilities Guide 1.2 Optional Run-time Parameters

The F parameter requires either an I or a D argument. When I is spedfied, ASM-86
produces an object file in Intel hex format. A D argument requests Digital Research hex
format. Appendix C details these formats. If the F parameter is not entered in the
command line, ASM-86 produces Digital Research hex format.

Table 1-2. Run-time Parameter Examples

Command Line] Result
I

ASMBB IO

ASMBB IO,ASM $AD SZ

ASMBB I0 $PY 9X

ASMB6 I05 FD

ASM88 I05 FI

Assemble file IO.A86, and produce IO.H86,
IO.LST, and IO.SYM, all on the default drive.

Assemble file IO.ASM on device D, and produce
IO.LST and IO.H86. No symbol file.

Assemble file IO.A86, produce IO.H86, route
listing directly to printer, and output symbols on
console.

Produce Digital Research hex format.

Produce Intel hex format.

1.3 Ending ASM-86

You can halt ASM-86 execution at any time by pressing any key on the console
keyboard. When a key is pressed, ASM-86 responds with the question:

UBER B R E A K . O K (Y / N) ? .

A Y response stops the assembly and returns to the operating system. An N response
continues the assembly.

End of Section 1

g DIGITAL RESEARCH"
1-5

Section 2
Elements of ASM-86 Assembly Language

2.1 A S M - 8 6 C h a r a c t e r Set

ASM-86 recognizes a subset of the ASCII character set. The valid characters are the
alphanumerics, special characters, and nonprinting characters shown below:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9

+ - ' / = () [l ; ' . t , _ : @ $

space, tab, carriage return, and line-feed

Lower-case letters are treated as upper-case, except within strings. Only
alphanumerics, special characters, and spaces can appear in a string.

2.2 T o k e n s a n d Separa to rs

A token is the smallest meaningful unit of an ASM-86 source program, much as a
word is the smallest meaningful unit of an English composition. Adjacent tokens are
commonly separated by a blank character or space. Any sequence of spaces can appear
wherever a single space is allowed. ASM-86 recognizes horizontal tabs as separators and
interprets them as spaces. Tabs are expanded to spaces in the list file. The tab stops are
at each eighth column.

2.3 Del imi ters

Delimiters mark the end of a token and add special meaning to the instruction, as
opposed to separators, which merely mark the end of a token. When a delimiter is
present, separators need not be used. However, using separators after delimiters makes
your program easier to read.

The following table, Table 2-1, describes ASM-86 separators and delimiters. Some
delimiters are also operators and are explained in greater detail in Section 2.6.

ss DIGITAL RESEARCH TM

2-1

2.3 Ddimiten Con~trrent C]P/M-86 Utilities Guide

Table 2-1. Separators and Ddimiters

Character I Name) U,e

20H space separator

09H tab legal in source files,
expanded in list files

CR carriage return terminate source lines

LF line-feed legal after CR if within
source lines, interpreted
as a space

; semicolon starts comment field

: colon identifies a label,
used in segment override
s p ~ c a ~ o n

period forms variables from
numbers

$ dollar sign notation for present value
of location pointer

+ plus arithmetic operator for
addition

- minus arithmetic operator for
subtraction

" u tedJk arithmetic operator for
multiplication

/ slash arithmetic operator for
division

@ "at ~ sign legal in identifiers

_ underscore legal in identifiers

l exdamation logically terminates a
point statement, allowing

multiple statements on a
singlesource line

' apostrophe delimits string constants

• DIGITAL RESEARCH ~
2-2

Concurrent CP/M-86 Udlides Guide 2.4 Constants

2 . 4 C o n s t a n t s

A constant is a value known at assembly ume that does not change while the assembled
program is executed. A constant can be either an integer or a character string.

2.4.1 Numeric Constants

A numeric constant is a 16-bit value in one of several bases. The base, called the radix
of the constant, is denoted by a traihng radix indicator. The radix indicators are shown
in Table 2-2:

Table 2-2. Radix Indicators for Constants

x,, ,c,,tor I Co,,st,,,,tT e I
B binary 2
O octal 8
Q octal 8
D decimal 10
H hexadecimal 16

ASM-86 assumes that any numeric constant not terminated with a radix indicator is
a decimal constant. Radix indicators can be upper- or lower-case.

A constant is thus a sequence of digits followed by an optional radix indicator, where
the digits are in the range for the radix. Binary constants must be composed of 0s and
ls . Octal digits range from 0 to 7; decimal digits range from 0 to 9. Hexadecimal
constants contain decimal digits and the hexadecimal digits A (10D), B (11D), C (12D),
D (13D), E (14D), and F (15D). Note that the leadingcharacter of a hexadecimal constant
must be a decimal digit, so that ASM-86 cannot confuse a hex constant with an identifier.
The following are valid numeric constants:

1234 1234D 11005 1111000011110000B
123dH OFFEH 33770 13772g
33770 OFE3H 1234d O f f f f h

B DIGITAL RESEARCH TM

2-3

2.4 Comumts Con~wrmt CP/M-86 Udlidu Guide

2.4.2 Character Strings

ASM-86 treats an ASCII character string delimited by apostrophes as a string constant.
All instructions accept only one- or two-character constants as valid arguments. Instruc-
tions treat a one-character string as a 8-bit number. A two-character string is treated as
a 16-bit number with the value of the second character in the low-order byte, and the
value of the first character in the high-order byte.

The numeric value of a character is its ASCII code. ASM-86 does not translate case
in character strings, so it accepts both upper- and lower-case letters. Note that only
alphanumerics, special characters, and spaces are allowed in strings.

A DB assembler directive is the only ASM-86 statement that can contain strings longer
than two characters. The string cannot exceed 255 bytes. Include any apostrophe you
want printed in the string by entering it twice. ASM-86 interprets the two keystrokes" as
a single apostrophe. Table 2-3 shows valid strings and how they appear aher processing:

Table 2-3. String Constant Examples

String in Source Text [A~ter Processing by ASM-86
I

s a ' •

' A b ' ' C d ' Ab'Cd
I I 1 # i

'ONLYUPPERCABE' ONLY UPPERCABE
eOn~Y ~ O W I ? O I I ! e O ~ l Y 1OWl? 0 1 1 1

2.5 Identif iers

Identifiers are character sequences that have speaal symbolic meaning to the assem-
bler. All identifiers in ASM-86 must obey the following rules:

I. The first character must be alphabetic (A,...Z, a,...z).
2. Any subsequent characters can be either alphabetic or a numeral (0,1,.....9).

ASM-86 ignores the special characters @ and _ but they are still legal. For
example, a_b becomes ab.

3. Identii~en can be of any length up to the limit of the physical line.

2~

Camcazzmt CPIM-86 Udliti~ Guide 2.5 ldeatifien

Identifiers are of two types. The first type are keywor& that the assembler recognizes
as having predefined meanings. The second type are symbols defined by the user. The
following are all valid identifiers:

NOLIST
MORD
AH
T h i r d _ s t r e e t
How__a~e_you .~ today
v a r i a b l e B n u M b e r B 1 2 3 4 5 B T 8 9 0

2.5.1 Keywor&

A keyword is an identifier that has a predefined meaning to the assembler. Keywords
are reserved; the user cannot define an identifier identical to a keyword. For a complete
fist ot keywords, see Appendix D.

ASM-86 recognizes five types of keywords: instructions, directives, operators, regis-
ters, and predefined numbers. 8086 instruction mnemonic keywords and the actions
they initiate are defined in Section 4. Directives are discussed in Section 3. Section 2.6
defines operators. Table Z-4 lists the ASM-86 keywords that identify 8086 registers.

Three keywords are predefined numbers: BYTE, WORD, and DWORD. The values
of these numbers are 1, 2, and 4, respectively. In addition, a type attribute is associated
with each of these numbers. The kcyword's type attribute is equal to the keyword's
numeric value.

i DIGITAL RESEARCH ~

2-S

7.5 Idenfifiezs Coagurgmt CPIM-86 UuTttim

Rem~ [
Symbol S ~

Table 2-4. ReSister Keywords

Value Mean/rig

AH I byte 100 B Accumulamr-Hish-Byte
BH I byte 111B Base-Resi~er-Hish-Byte
CH I byte 101 B Count-Reskter-Hish-Byte
DH I byte 1 I0 B Data-~Hish-Byte

AL I byte 000 B Accumulator-Low-Byte
BL I byte 011 B Bue-Register-Low-Byte
CL I byte 001 B Count-Resiater-Low-Byte
DL 1 byte 010 B D a t a - ~ - L o w - B y t e

AX 2 bytes 000 B Acaunulator (full word)
BX 2 bytes 011 B Base-Register (full word)
CX 2 bytes 001 B Count-Reg~ter (full word)
DX 2 bytes 010 B Dam-Resim~ (full word)

BP 2bytes 101B I~cPointcr
SP 2 bytes 100 B Stack Pointe~

SI 2bytes 110B Source Index
DI 2byms 111 B Dettination Index

CS 2 bytes 01 B Code-Segment-Re~ter
DS 2 bytes 11 B Data-Segment-Register
SS 2 bytes 10 B Stack-Sesment-Register
ES 2 bytes O0 B Extra-£~ment-Resister

2.5.2 Symbols and Their Attributes

A symbol is a user-defined identifier that has attributes specifying the kind of informa-
tion the symbol represents. Symbols fall into three categories:

• variables
• labels
• numbers

i s DIGITAL i t .ESF~RCH ~

2-6

C, oncurrmt CP/M-86 Utilities Guide 2.$ Idmtit~as

Variables

Variables identify data stored at a particular location in memory. All variables have
the following three attributes:

• Segment tells which segment was being assembled when the variable was defined.
• Offset tells how many bytes there are between the beginning of the segment and

the location of this variable.
• Type tells how many bytes of data are manipulated when this variable is referenced.

A segment can be a Code Segment, a Data Segment, a Stack Segment, or an Extra
Segment, depending on its contents and the register that contains its starting address.
See Section 3.2. A segment can start at any address divisible by 16. ASM-86 uses this
boundary value as the segment portion of the variable's definition.

The offset of a variable can be any number between 00H and 0FFFFH
(65535 decimal). A variable must have one of the following type attributes:

• BYTE
• WORD
• DWORD

BYTE specifies a one-byte variable; WORD, a two-byte variable, and DWORD, a
four-byte variable. The DB, DW, and DD directives, respectively, define variables as
these three types. See Section 3.2.2. For example, a variable is defined when it appears
as the name for a storage directive:

V A R I A B L E D 5 0

A variable can also be defined as the name for an EQU directive referencing another
label, as shown below:

V A R I A B L E EOU ANOTHER V A R I A B L E
B

Labels

Labels identify locations in memory that contain instruction statements. They are
referenced with jumps or calls. All labels have two attributes: segment and offset.

m DIGITAL RESEARCH ~

2-7

2.$ ldmtifias Ezmmrrmt CP/M-86 Uflitia

Label segment and offset attributes are essentially the utme as variable k-gment and
o ~ e t attributes. In general, a label is defined when it precedes an imerucdon. A colon,
:, separates the label from the instruction. For example,

LABEL: ADD AXtBX

A label can also appear as the name for an EQU directive referencing another label.
For example,

LABEL EOU ANOTHER__LABEL

Numbers

Numbers can also be defined as symbols. A number symbol is treated as though you
had explicitly coded the number it represents. For example,

N u M b e r _ f i v e EOU 5
MOU AL,NuMber_fivt

equals

MOV AL , 5

Section 2.6 describes operators and their effects on numbers and number symbols.

2 .6 O p e r a t o r s

ASM-86 operators fall into the following categories: arithmetic, logical, and relational
operators, L-ghent override, variable manipulators, and creators. The following table
defines ASM-86 operators. In this table, a and b represent two dements of the expression.
The validity column defines the type of operan& the operator can manipulate, using the
OR bar character I to separate alternatives.

• DIGITAl. RI~SF..,~CH"
2-8

Camemcmt CP/M-86 Utiliti~ Guide 2.60pernton

Table 2-5. ASM-86 Operators

Syntax [R,sult [Validity

Logical Operators

a XOR b bit-by-bitlogical EXCLUSIVE a, b = number
OR of a and b

OR b bit-by-bit logical OR of a a, b -- number
and b

a AND b bit-by-bitlogicalANDofa a,b -- number
and b

NOT a logical inverse of a: all 0s a = 16-bit number
become ls, ls become 0s

Relational Operators

EQ b returns 0FFFFHifa ffi b, a, b = unsigned
otherwise 0 number

a LT b returns0FFFFTlifa<b, a,b = unsigned
otherwise 0 number

a LE b remrns0FFFFHifa<ffi b, a,b = unsigned
otherwise 0 number

a GT b remrns0FFFFTIifa>b, a,b = unsigned
otherwise 0 number

a GE b remrns0FFFH-l i fa>= b a,b = unsigned
otherwise 0 number

a NE b r emrns0FFFFHifa<~b , a . b - unsigned
otherwise 0 number

I D I G I T A L RESEARCI'I ~

2-9

2.60paston Concusrmt CP/M-86 U6J~tia

Table 2-5. (continued)

Syntax] Result] Validity

. ~ , ' i d ~ c Opera ton

a + b ar i thmeticsumofaandb a = variable,
label or number
b = number

a - b arithmetic difference of a = variable,
a and b label or number

b = number

a * b does unsisned multiplication a, b = number
of a and b

a / b does unsigned division of a a, b -- number
andb

a MOD b reternsremainderofa/b a,b = number

a SHL b returns the value which a,b = number
resuks from shifting a to
le~ by an amount b

a SHR b retumsthevaluewhich a, b -- number
results from shifting a m
the right by an amount b

+ a gives a a = number

- a gives 0 - a a = number

Sq;mcat O v ~ i d c

<seg reg>: overrides assembler's choice <se8 reg> ---
<addr exp> of sesment register. CS, DS, SS

orES

• DIGITAL RY..SEARC~"
2-10

Coucurrmt CP/M-g6 Utilitiew Guide

Table 2-5. (continued)

2 .60peraton

Syntax] Result] Validity

Variable Man ipda ton , Creaton

SEG a creates a number whose value is the a = label I variable
segment value of the variable or
label a. The variable or label
must be declared in an absolute
segment (i.e. CSEG 1234H);
otherwise the SEG operator is
undefined.

OFFSET a creates anumberwhosevalue a = label]variable
is the offset value of the
variable or label a.

TYPE a creates a number. If the vari- a = label [variable
able a is of type BYTE, WORD
or DWORD, the value of the num-
ber is 1,2, or 4, respectively.

LENGTH a creates a number whosevalue
is the length attribute of the
variable a. The length attribute
is the number of bytes associated
with the variable.

LAST a if LENGTH a > 0, then LAST a = label] variable
a = LENGTH a - l ; ifLENGTH
a = O, then LAST a = 0.

creates virtual variable or label with
type of a and attributes of b.

a P T R b

.a creates variable with an offset attri-
bute of a; segment attribute is
current segment.

creates label with offset no argument
equal to current value of
location counter; segment
attribute is current segment.

a = label [variable

a = BYTE[
WORD, I DWORD
b = <addrexp>

a = number

m DIGITAL RESEARCH TM

2-11

2 . 6 0 p e ~ t m Coacurrmt CP/M-86 Utilities Guide

2.6.1 Operator Examples

Logical operators accept only numbers as operands. They perform the Boolean logic
operations AND, OR, XOR, and NOT. For example,

OOFC MASK EQU OFCH
OOBO SIGNBIT EQU 80H

0000 BIBO MOV CL,MASK AND SIGNBIT
0002 BOO3 MDV AL,NOTMASK

Relational operators treat all operands as unsigned numbers. The relational operators
are EQ (equal), LT (less than), LE (less than or equal), GT (greater than), GE (greater
than or equal), and NE (not equal). Each operator compares two ope~ands and returns
all ones (0FFFFH) if the spedfled relation is true, and all zeros flit is not. For example,

O00A LIMITI EOU 10
0018 LIMIT2 EgU 25

0

t

0004 5BFFFF MDV
0007 BBO000 MDV

AX,LIMIT1LTLIMIT2
AXtLIMIT1GTLIMIT2

Addition and subtraction operators compute the arithmetic sum and difference of two
operands. The first operand can be a variable, label, or number, but the second operand
must be a number. When a number is added to a variable or label, the result is a variable
or label, the offiet of which is the numeric value of the second operand plus the offset
of the first operand. Subtraction from a variable or label returns a variable or label, the
offset of which is that of first operand decremented by the number specified in the second
operand. For example,

0002 EOUNT
0005 DISP1

O00A FF FLAG

O00B 2EAOOBO0
O00F 2EBAOEOFO0
0014 B303

EQU 2
EQU 5
DB OFFH
0

o

MOV AL ~FLAG+I
MOV CL,FLAG+DISPI
MOV BL tDISPI-COUNT

• DIGITAL RESEARCH m

Concurrent CP/M-86 Utilities Guide 2.6 opemtm

The multiplication and division operators *,/, MOD, SHL, and SHR accept only
numbers as operands. * and / treat all operands as unsigned numbers. For example,

0018 BE5500 MOV SI,258/3
0019 8310 MOV BL,B4/4

0050 BUFFERSIZE EgU 80
015 58A000 MOV AX,BUFFERSIZE * 2

Unary operators accept both signed and unsigned operators, as shown in the following
example:

O01E 8123 MOV CLt+35
0020 5007 MOV AL,2--5
0022 B2F4 NOV D L , - 1 2

When manipulating variables, the assembler decides which segment register to use.
You can override the assembler's choice by specifying a different register with the
segment override operator. The syntax for the override operator is

<segment register> : <address expression>

where the <segment register> is CS, DS, SS, or ES. For example,

0024 388B472D MOV
0028 28880E5500 MOV

AX,SS: WORDBUFFER[BX]
CX,ES: ARRAY

A variable manipulator creates a number equal to one attribute of its variable operand.
SEG extracts the variable's segment value; OFFSET, its offset value; TYPE, its type value
(1, 2, or 4); and LENGTH, the number of bytes associated with the variable. LAST
compares the variable's LENGTH with 0 and, if greater, then decrements LENGTH by
one. If LENGTH equals 0, LAST leaves it unchanged. Variable manipulators accept
only variables as operators. For example,

IJ DIGITAL RESEARCH TM

2-13

2.6 Operators Concurrent CPIM-86 UW~La Guide

1234
O02D 0 0 0 0 0 0 0 0 0 0 0 0 WORDBUFFER
0033 0 1 0 2 0 3 0 4 0 5 BUFFER

0038 B80500 MOV
0035 5 8 0 4 0 0 MOV
O03E BSOIO0 NOV
0041 580200 MOV
0044 B83412 MOV

DSEG 1234H
DW 0 , 0 , 0
DB 1 ,2,3,4 t5
t

o

o

AX,LENGTH BUFFER
AX,LAST BUFFER
A×,TYPE BUFFER
AX,TYPE WORDBUFFER
AX,SEC BUFFER

The FIR operator creates a virtual variable or label that is valid only during the
execution of the instruction. It makes no changes to either of its operands. The temporary
symbol has the same Type attribute as the left operator and all other attributes of the
right operator as shown in the following example:

0044 CB0705 MOV BYTE PTR [B X] , 5
0047 BA07 MDV AL,BYTE PTR [B X]
004B FF04 IN~ WORD PTR [S l]

The period operator creates a variable in the current data segment. The new variable
has a segment attribute equal to the current data segment and an offset attribute equal
to its operand. The operand of the new variable must be a number. For example,

O04B AIO000 MOV A×, . 0
O04E 2EBB1EO040 MOV BX, ES: . 4 0 0 0 H

The dollar-sign operator, $, creates a label with an offset attribute equal to the current
value of the location counter. The label's segment value is the same as the current
segment. This operator takes no operand. For example,

0053 EgFDFF JMP $
0056 EBFE JMPS $
0058 ESFD2F JMP $+3000H

2.6.2 Operator Precedence

Expressions combine variables, labels, or numbers with operators. ASM-86 allows
several kinds of expressions. See Section 2.7. This section defines the order in which
operations are executed if more than one operator appears in an expression.

m DIGITAL RESEARCH"
2-14

Concurrent CP/M-86 Utifities Guide 2.6 Operators

ASM-86 evaluates expressions left to right, but operators with higher precedence are
evaluated before operators with lower precedence. When two operators have equal
precedence, the leftmost is evaluated first. Table 2-6 presents ASM-8 6 operators in order
of increasing precedence.

Parentheses can override rules of precedence. The part of an expression enclosed in
parentheses is evaluated first. If parentheses are nested, the innermost expressions are
evaluated first. Only five levels of nested parentheses are legal. For example,

1 5 1 3 + I B I O = 5 + 2 = 7

1 5 1 (:] + I B I S) = 1 5 1 (: 3 + 2) = 1 5 1 5 = 3

Table 2-6.

Order I
1

2

3
4

7

8

9

10

11

Precedence of Operations in ASM-86

Operator Type I Operators
Logical

Logical

Logical

Relational

Addition/subtraction

Multiplication/division

Unary

Segment override

Variable manipulators,

c r e a t o r s

Parentheses/brackets

Period and Dollar

XOR, OR

AND

NOT

EQ, LT, LE, GT,
GE, NE

+ , - -

*,/, MOD, SHL,
SHR

+ , -

< s e g m e n t override>:

SEG, OFFSET, PTR,

TYPE, LENGTH, LAST

(),[]

. , $

M DIGITAL RESEARCH TM

2-15

2.7 e~prmlom C,¢mcummt CP/M-86 Utilitia Guide

2.7 Express ions

ASM-86 allows address, numeric, and bracketed expressions. An address expression
evaluates to a memory address and has three components:

• segment value
• offset value
[] type

Both variables and labels are address expressions. An address expression is not a
number, but its components are numbers. Numbers can be combined with operators
such as PTR to make an address expression.

A numeric expression evaluates to a number. It does not contain any variables or
labels, only numbers and operands.

Bracketed expressions specify base- and index-addressing modes. The base registers
are BX and BP, and the index registers are DI and SI. A bracketed expression can consist
of a base register, an index register, or both a base register and an index register. Use
the + operator between a base register and an index register to specify both base- and
index-register addressing. For example,

MOV AX t rSX+DI'I

MOV AX ~[81~I

2.8 Sta tements

Just as tokens in this assembly language correspond to words in English, statements
are analogous to sentences. A statement tells ASM-86 what action m perform. Stamnents
can be instructions or directives. Instructions are translated by the assembler into 8086
machine language instructions. Directives are not txanslated into machine code, but
instead direct the assembler to perform certain clerical functions.

Terminate each assembly language statement with a carriage return, CR, and line-feed,
LF, or with an exclamation p o i n t s !. ASM-86 treats these as an end-of-line. Multiple
assembly language statements can be written on the same physical line if separated by
exclamation points.

R DIGITAL Iq~S~,A.RCI"I "~
2-16

Concurrmt CP/M-86 Utilities Guide 2.8 Statements

The ASM-86 instruction set is defined in Section 4. The syntax for an instruction
statement is

[label:] [prefix] mnemonic [operand(s)] [;comment]

where the fields are defined as

• label

• prefix

• mnemonic

• operands

• comment

A symbol followed by : defines a label at the current value of the
location counter in the current segment. This field is optional.

Certain machine instructions such as LOCK and REP can prefix
other instructions. This field is optional.

A symbol defined as a machine instruction, either by the assembler
or by an EQU directive. This field is optional unless preceded by
a prefix instruction. If it is omitted, no operands can be present,
although the other fields can appear. ASM-86 mnemonics are
defined in Section 4.

An instruction mnemonic can require other symbols to represent
operands to the instruction. Instructions can have zero, one, or
two operands.

Any semicolon appearing outside a character string begins a
comment. A comment ends with a carriage return. Comments
improve the readability o f programs. This field is optional.

U DIGITAL ~EA~CH TM - -

2-17

2.8 Stmmamm Co,,_currmt CP/M-86 Ut~itim Guide

ASM-86 directives are described in Section 3. The syntax for a directive statement is

[name] directive operand(s) [;comment]

where the fields are defined as

• name

• directive
m operands

m c o ~ t

Unlike the label field of an instruction, the name field of a directive
is never terminated with a colon. Directive names are lesa] only
for DB, DW, DD, RB, RS, RW, and EQU. For DB, DW, DD, and
RS, the name is optional; for EQU, it is required.
One of the directive keywords defined in Section 3.
Analogous to the operands for instruction mnemonics. Some
directives, such as DB, DW, and DD, allow any operand; others
have special requiremenm.
Exactly as defined for instruction statements.

~ o f s e c ~ , 2

J DIGITAL RF~S~(3~"
2-18

Section 3
Assembler Directives

3.1 h ~ u ~ o n

Directive statements cause ASM-86 to perform housekeeping functions, such as
assigning portions of code to logical segments, requesting conditional assembly, defining
data items, and specifying listing file format. General syntax for directive statements
appears in Section 2.8.

In the sections that follow, the specific syntax for each directive statement is given
under the heading and before the explanation. These syntax lines use special symbols
to represent possible arguments and other alternatives. Square brackets, L], enclose
optional arguments.

3 .2 Segment Start Directives

At run-time, every 8086 memory reference must have a 16-bit segment base value and
a 16-bit offset value. These are combined to produce the 20-bit effective address needed
by the CPU to physically address the location. The 16-bit segment base value or boundary
is contained in one of the segment registers CS, DS, SS, or ES. The offset value gives the
offset of the memory reference from the segment boundary. A 16-byte physical segment
is the smallest rdocatable unit of memory.

ASM-86 predefines four logical segments: the Code Segment, Data Segment, Stack
Segment, and Extra Segments, which are addressed respectively by the CS, DS, SS, and
ES registers. Future versions of ASM-86 will support additional segments, such as
multiple data or code segments. All ASM-86 statements must be assigned to one of the
four currently supported segments so that they can be referenced by the CPU. A segment
directive statement, CSEG, DSEG, SSEG, or ESEG, specifies that the statements following
it belong to a specific segment. The statements are then addressed by the corresponding
segment register. ASM-86 assigns statements to the spedfied segment until it encounters
another segment directive.

B DIGITAL RESEARCI-I ~

3-1

3.2 Sqgamt Start Dirmlves Cencunmt CP/M-86 Utilitia Guide

Instruction statements must be assigned to the Code Segment. Directive statements
can be assigned to any segment. ASM-86 uses these auignments m change from one
segment register to another. For example, when an instruction accesses a memory
variable, ASM-86 must know which segment contains the variable so it can generate a
segment-override prefix byte if necessary.

3.2.1 The CSEG Directive

Syntax:

CSEG numeric expression
CSEG
CSEG $

This directive tells the assembler that the following statements bdong in the Code
Segment. All instruction statements must be assigned to the Code Segment. AU directive
statements are legal in the Code Segment.

Use the first form when the location of the segment is known at assembly time; the
code generated is not relocatable. Use the second form when the segment location is not
known at assembly time; the code generated is rdocatable. Use the ~hird form to continue
the Code Segracnt after it has been interrupted by a DSEG, SSEG, or ESEG directive.
The continuing Code Segment starts with the same attributes, such as location and
instruction pointer, as the previous Code Segment.

3.2.2 The DSEG Directive

Syntax:

DSEG numeric expression
DSEG
DSEG $

This directive specifies that the following statements belong m the Data Segment. The
Data Segment contains the data allocation directives DB, DW, DD, and RS, but all other
directive statements are also legal. Instruction statements are illegal in the Data Segment.

Use the first form when the location of the segment is known at assembly time; the
code generated is not relocatable. Use the second form when the segment location is not
known at assembly time; the code generated is relocatable. Use the third form to continue
the Data Segment after it has been interrupted by a CSEG, SSEG, or ESEG directive.
The continuing Data Segment starts with the same attributes as the previous Data

~egment.

m DIGITAL R.E.qI~CI4"
3-2

Concurrent CP/M-86 Utilities Guide 3.2 Segmem Start D/rectives

3.2.3 The SSEG D/rective

Syntax:

SSEG numeric expression
SSEG
SSEG $

The SSEG directive indicates the beginning of source lines for the Stack Segment. Use
the Stack Segment for all stack operations. All directive statements are legal in the Stack
Segment, but instruction statements are illegal.

Use the first form when the location of the segment is known at assembly time; the
code generated is not relocatable. Use the second form when the segment location is not
known at assembly time; the code generated is relocatable. Use the third form to continue
the Stack Segment after it has been interrupted by a CSEG, DSEG, or ESEG directive.
The continuing Stack Segment starts with the same attributes as the previous Stack
Segment.

3.2.4 The ESEG Directive

Syntax:

ESEG numeric expression
ESEG
ESEG $

This directive initiates the Extra Segment. Instruction statements are not legal in this
segment, but all directive statements are legal.

Use the first form when the location of the segment is known at assembly time; the
code generated is not relocatable. Use the second form when the segment location is not
known at assembly time; the code generated is relocatable. Use the third form to continue
the Extra Segment after it has been interrupted by a DSEG, SSEG, or CSEG directive.
The continuing Extra Segment starts with the same attributes as the previous Extra
Segment.

J DIGITAL RESEARCH"
3-3

3.3 The ORG Directive Contm~mt CP/M-86 Utilities Guide

3.3 T h e O R G Directive

Syntax:

ORG numeric expression

The ORG directive sets the offset of the location counter in the current segment to
the value specified in the numeric expression. Define all elements of the expression before
the ORG directive because forward references can be ambiguous.

In most segments, an ORG directive is unnecessary. If no ORG is included before the
first instruction or data byte in a segment, assembly begins at location zero relative to
the beginning of the segment. A segment can have any number of ORG directives.

3.4 T h e IF and E N D I F Directives

IF numeric expression
source line 1
source line 2

source line n
ENDIF

The IF and ENDIF directives allow a group of source lines to be included or excluded
from the assembly. Use conditional directives to assemble several different versions of
a single source program.

When the assembler finds an IF directive, it evaluates the numeric expression following
the IF keyword. If the expression evaluates to a nonzero value, then source line I through
source line n are assembled. If the expression evaluates to zero, the lines are not
assembled, but are listed unless a NOIFLIST directive is active. All dements in the
numeric expression must be defined before they appear in the IF directive. IF directives
can be nested to a maximum depth of five levels.

m DIGITAL g.E~EARCH TM

3-4

Concurreat CP/M-86 Utilitles Guide 3.5 The INCLUDE Directive

3 .5 T h e I N C L U D E Direct ive

Syntax:

INCLUDE filespec

This directive includes another ASM-86 file in the source text. For example,

INCLUDE EQUALS.ABS

Use INCLUDE when the source program resides in several different files. INCLUDE
directives cannot be nested; a source file called by an INCLUDE directive cannot contain
another INCLUDE statement. If filespec does not contain a filetype, the fdetype is
assumed to be .A86. If the file specification does not include a drive specification, ASM-86
assumes that the file resides on the drive containing the source tile.

3 .6 T h e E N D Direc t ive

Syntax:

END

An END directive marks the end of a source file. Any subsequent lines are ignored by
the assembler. END is optional. If not present, ASM-$6 processes the source until it
finds an end-of-file character (1AH).

3 .7 T h e E Q U Direc t ive

Syntax:

symbol EQU numeric expression
symbol EQU address expression
symbol EQU register
symbol EQU instruction mnemonic

The EQU, equate, directive assigns values and attributes to user-defined symbols. The
required symbol name cannot terminate with a colon. The symbol cannot be teddiued
by a subsequent EQU or another directive. Any elements used in numeric or address
expressions must be defined before the EQU directive appears.

m DIGITAL RESF.ARCH TM

3-5

3.7 The EQU Directive Concurrent CP/M-86 Utilifes Guide

The first form assigns a numeric value to the symbol. The second assigns a memory
address. The third form assigns a new name to an 8086 register. The fourth form defines
a new instruction (sub)set. The following are examples of these four forms:

0005 FIVE
0033 NEXT
0001 COUNTER

MOVVV

O05D 8BC3

EQU 2 ~ 2 +1
EQU SUFFER
EQU CX
EQU MOV

0

t

MOVVV AX ~5X

3.8 T h e DB Direct ive

Syntax:

[symbol] DB numeric expression[,numeric expression...]
[symbol] DB suing constant[,string constant...]

The DB direc~ve defines initialized storage areas in byte format. Numeric expressions
are evaluated to 8-bit values and sequentially placed in the hex output ~e. String
consumts are placed in the output file according to the rules defined in Section 2.4.2.
A DB directive is the only ASM-86 statement that accepts a suing constant longer than
two bytes. There is no translation from lower- to upper-case within suinss. Multiple
expressions or constants, separated by commas, can be added to the definition, but
cannot exceed the physical line length.

Use an optional symbol to reference the defined data area throughout the program.
The symbol has four attributes: the segment and offset attributes determine the symbol's
memory reference, the type attribute specifies single bytes, and the length attribute tells
the number of bytes (allocation units) reserved.

m D ~ I ~ S P . A . q . c H ~

3-6

Concurrent CPIM-86 Utilities Guide 3.8 The DB Directive

The following statements show DB directives with symbols:

O05F 43502F4D2073 TEXT 08
79737465D00

0088 E1 AA DB
OOEC 0 1 0 2 0 3 0 4 0 5 X DB

0071B �OCO0 MOU

' C P / M s y s ~ e m ' t O

' a ' + 80H
1 ,2 ~3 t 4 , 5
t

0

CX*LENGTH TEXT

3.9 T h e D W Direct ive

STat~:

[symbol] DW numeric expression[,numeric expression...]
[symbol] DW stung constant[,string constant...]

The DW directive initializes two-byte words of storage. String constants longer than
two characters are illegal. Otherwise, DW uses the same procedure as DB to initialize
storage. The following are examples of DW statements:

0074 0000 CNTR DW 0
0076 63C186C169C1 JMPTAB DW SUBRI,SUBR2,SUBR3
007C 0 1 0 0 0 2 0 0 0 3 0 0 DW 1 , 2 , 3 , 4 , 5 , 6

0 4 0 0 0 5 0 0 0 6 0 0

M DIGITAL RF~F.ARCI'I TM

3-7

3.10 The DD Directive Coucm-rmt CP/M-86 Udlldm Guide

3 .10 T h e D D Direct ive

Syntax:

[symbol] DD numeric expression[,address expression...]

The DD directive initializes four bytes of storage. The offset attribute of the address
expression is stored in the two lower bytes; the segment attribute is stored in the two
upper bytes. Otherwise, DD follows the same procedure as DB. For example,

1234 CSEG 1234H

t

0000 6CC134128FCl LONG__JHPTAB DD ROUTI~ROUT2
3412

0008 72C1341275C1 DD ROUT3tROUT4
3412

3.11 T h e RS Direct ive

.Syntax:

[symbol] RS numeric expression

The RS directive allocates storage in memory but does not initialize it. The numeric
expremion gives the number of bytes m be reserved. An ILS statement does not give a
byte attribute to the optional symbol. For example,

0010 BUF R8 BO
00fi0 RS 4000H
40BO RS 1

If an ILS statement is the last statement in a segment, you must follow it with a DB
statement in order for GENCMD to allocate the memory space.

I DIGEAL ~ C ~ P
3-8

Concurr~t CP/M-86 Utilities Guide 3.12 The RB Directive

3 .12 T h e RB Direc t ive

Syntax:

[symbol] RB numeric expression

The RB directive allocates byte storage in memory without any initialization. This
directive is identical to the KS directive except that it gives the byte attribute.

3 .13 T h e R W Direc t ive

Syntax:

[symbol] RW numeric expression

The RW directive allocates two-byte word storage in memory but does not initialize
it. The numeric expression gives the number of words to be reserved. For example,

4061 BUFF RN 128
4161 RN 4000H
CIB1 RW 1

3 .14 T h e T I T L E Direct ive

Syntax:

TITLE string constant

ASM-86 prints the string constant defined by a TITLE directive statement at the top
of each printout page in the listing file. The title character string should not exceed 30
characters. For example,

TITLE ' C P / M m o n i ~ o r '

If the title is too long, the ASM-86 page number overwrites the title.

B DIGITAL KESEARCH ~
3-9

3.15 The PAGESIZE Directive Concuzrmt CP/M-86 Utffuiea Guide

3.15 T h e PAGESIZE Directive

Syntax:

PAGESIZE numeric expression

The PAGESIZE directive defines the number of lines to be included on each printout
page. The default page size is 66.

3 .16 T h e P A G E W I D T H Directive

Syntax:

PAGEWIDTH numeric expression

The PAGEWIDTH directive defines the number of columns printed across the page
when the listing file is output. The default page width is 120, unless the listing is routed
directly to the terminal, when the default page width is 78.

3 .17 T h e E J E C T Directive

Syntax:

EJECT

The EJECT directive performs a page eject during printout. The EJECT directive itself
is printed on the first line of the next page.

3.18 T h e S I M F O R M Directive

Syntax:

SIMFORM

The SIMFORM directive replaces a form-feed (FF) character in the print file with the
correct number of line-feeds (LF). Use this directive when printing out on a printer unable
to interpret the form-feed character.

• • DIGITAL RESEARCH TM

3-10

Concurrent CP/M-86 Utilities Guide 3.19 The NOLIST and LIST Directives

3 .19 T h e N O L I S T and LIST Directives

Syntax:

NOLIST
LIST

The NOLIST directive blocks the printout of the following lines. Restart the listing
with a LIST directive.

3 .20 T h e IFLIST and N O I F L I S T Directives

Syntax:

IFLIST
NOIFLIST

The NOIFLIST directive suppresses the printout of the contents of IF-ENDIF blocks
that are not assembled. The IFLIST directive resumes printout of IF-ENDIF blocks.

End of Section 3

m DIGITAL RESEARCH"
3-11

Section 4
The ASM-86 Instruction Set

4.1 Introduction

The ASM-86 instruction set includes all 8086 machine instructions. This ~.-tion
briefly describes ASM-86 instructions; these descriptions are organized into banctional
groups. The general syntax for instruction statements is given in Section 2.8.

The following sections define the specific syntax and required operand types for each
instruction, without reference to labels or comments. The instruction definitions are
presented in tables for easy reference. For a more detailed description of each instruction,
see Intel's MCS-86" Assembly Language Reference Manual For descriptions of the
instruction bit patterns and operations, see Intel's MCS-86 User's Manual.

The instruction-definition tables present ASM-86 instruction statements as combina-
tions of mnemonics and operands. A mnemonic is a symbolic repr~o~entation for an
instruction; its operands are its required parameters. Instructions can take zero, one, or
two operands. When two operands are specified, the left operand is the instruction's
destination operand, and the two operands are separated by a comma.

The instruction-definition tables organize ASM-86 instructions into functional groups.
In each table, the instructions are listed alphabetically. Table 4-1 shows the symbols
used in the instruction-definition tables to define operand types.

Table 4-1. Openmd Type Symbols

Symbol Operand Type

numb

numb8

at.c:

reg

regl6

segreg

any numeric expression

any numeric expression which evaluates to an 8-bit number

accumulator register, AX or AL

any general purpose register, not segment register

a 16-bit general purpose register, not segment register

any segment register: CS, DS, SS, or ES

[] DIGITAL R~SEARCLI"

4-1

4.1 In t rodm~ ~ t CP/M-86 Utilitia Guide

Table 4-1. (continued)

I Operand Type
mem

simpmem

memlreg

memlreg16

label

lab8

any ADDRESS expreuion, with or without base- and/or index-
addressing modes, such as

variable
variable+3
varlable[bx]
varlable[SI]
variable[BX + SI]
[BX]
[BP+DI]

any ADDRESS expression WITHOUT base- and index-addressing
modes, such as

variable
variable + 4

any expression symbolized by reg or mere

any expression v/mbolized by memlre8, but must be 16 him

any ADDRF..~ expression that evaluates to a label

any label that is within -+ 128 bytes distance from the instruction

The 8086 CPU has nine single-bit Hag x~-gisten that reflect the state of the CPU. The
cannot access these r e . t e n directly, but the user can test them to ~ the

effects of an executed instruction upon an operand or register. The effects of instructions
on Flag registers are ahto ~ b e d in the intmlction-definition table~ using the tymbols
shown in Table 4-2 to represent the nine Flag repters.

IDBE~]t.]~;E.ML(::Z-P
4 ~

Concurreat CP/M-86 Utilities Guide 4.1 Introduction

Table 4-2. Flag Resister Symbols

Symbol] Meaning
AF Auxiliary-Carry-Flag
CF Carry-Flag
DF Direction-Flag
IF Interrupt-Enable-Flag

OF Overflow-Flag
PF Parity-Flag
SF Sign-Flag
TF Trap-Flag
ZF Zero-Flag

4 .2 Da ta T rans fe r Instruct ions

There are four classes of data transfer operations: general purpose, accamulator
specific, address-object, and flag. Only SAHF and POPF affect flag settings. Note in
Table 4-3 that if acc= AL, a byte is transferred, but if acc= AX, a word is transferred.

Table 4-3. Data Transfer Instructions

Syntax] Result
IN acc.,numb81numb16

IN acc,DX

LAHF

LDS reg16,mem

LEA reg16,mem

LES reg16,mem

Transfer data from input port by numb8 or
numbl6 (0-255) to accumulator.

Transfer data from input port given by DX
register (0-0FFFFH) to accumulator.

Transfer flags to the AH register.

Transfer the segment part of the memory
address (DWORD variable) to the DS segment
register; transfer the offset part to a general
purpose 16-bit register.

Transfer the offset of the memory address to a
(16-bit) register.

Transfer the segment part of the memory
address to the ES segment register; transfer the
offset part to a 16-bit general purpose register.

II DIGITAL RESEARCH TM

4-3

| |

4~ DamTntmfzrlmuucdma Concurrent CP/M-86 Utaitia Guide

Table 4-3. (continued)

Syntax

MOV

MOV

MOV

MOV

MOV

OUT

reg~mem[res

memlreg,re8

mem[reg,numb

segregjnem]res16

mem[regl6,sesres

numbSlnumb16,acc

OUT DX,acc

POP mem]reg16

POP segreg

POPF

PUSH mem[res16

PUSH segreg

PUSI-IF

SAI-IF

XCHG res~em[reg

XCHG mem[res, reg

XLAT mem[reg

Result

Move memory or re~ter to refuter.

Move re~ter to memory or register.

Move/mined/ate data to memory or reg/ster.

Move memory or register to segment register.

Move segment register to memory or register.

Transfer data from accumulator to output port
(0-255) given by numb8 or numb16.

Transfer data from accumulator to output port
(O-0FFFFH) given by DX register.

Move top stack dement to memory or register.

Move top stack element to segment register.
Note that CS segment register is not allowed.

Transfer top stack element m/]aSs.

Move memory or register to top stack dement,

Move segment register to top stack element.

Transfer flags to mp stack dement.

Transfer the AH r q ~ e r to flags.

Exchange register and memory or register.

Exchange memory or reg~ter and register.

Perform table lookup translation, table Oven
by mem]reg, which is always BX. Replaces
AL with AL offset from BX.

m DIGITAL R E S E A R C H "

4-4

Concurreat CP/M-86 Utilities Guide 4.3 Arithmetic, Logical, and Shift Instructions

4.3 Arithmetic, Logical, and Shift Instructions

The 8086 CPU performs the four basic mathematical operations in several different
ways. It supports both 8 - and 16-bit operations and also signed and unsigned arithmetic.

Six of the nine flag bits are set or cleared by most arithmetic operations to reflect the
result of the operation. Table 4-4 summarizes the effects of arithmetic instructions on
flag bits. Table 4-5 defines arithmetic instructions. Table 4-6 defines logical and shift
instructions.

Table 4-4. Effects of Arithmetic Instructions on Flags

Flag Bit] Result
CF set if the operation resulted in a carry out of (from addition) or a

borrow into (from subtraction) the high-order bit of the result.
Otherwise, CF is deared.

AF set if the operation resulted in a carry out of (from addition) or a
borrow into (from subtraction) the low-order four bits of the result.
Otherwise, AF is cleared.

ZF set if the result of the operation is zero. Otherwise, ZF is cleared.

SF set if the result is negative.

PF set if the modulo 2 sum of the low-order eight bits of the result of
the operation is 0 (even parity). Otherwise, PF is cleared (odd
parity).

OF set if the operation resulted in an overflow; the size of the result
exceeded the capacity of its destination.

m DIGITAL RESEARCH TM

4-5

4.3 Ari~m¢~ Losical, and Shift Instructiom Concurrent CP/M-g6 Utillt/a Guide

Table 4-5. Arithmetic Instructions

Syntax Result

AAA

AAD

AAM

AAS

ADC

ADC

ADC

ADD

ADD

ADD

CBW

CWD

CMP

CMP

CMP

DAA

DAS

reg, mem]reg

mem]reg,reg

memlreg,numb

reg, mem]reg

memlreg, reg

memlreg, numb

regjnemlreg

memJre~reg

memlreg,numb

Adjust unpacked BCD (ASCII) for addition;
adjusts AL.

Adjust unpacked BCD (ASCII) for division;
adjusts AL.

Adjust unpacked BCD (ASCII) for multiplica-
tion; adjusts AX.

Adjust unpacked BCD (ASCII) subtraction;
adjusts AL.

Add (with carry) memory or register to register.

Add (with carry) register to memory or register.

Add (with carry) immediate data to memory or
register.

Add memory or register m register.

Add register m memory or register.

Add immediate data to memory or reg/ster.

Convert byte in AL to word in All by sign
e x t e I ~ o n .

Convert word in AX to double word in DX/AX
by sign extension.

Compare register with memory or register.

Compare memory or register with register.

Compare data constant with memory or
register.

Decimal adjust for addition; adjusts AL.

Decimal adjust for subtraction; adjusts AL.

m DIGITAL RESEARCH ~

4-6

Goncurrmt CP/M-86 Ufiliti~ Guide 4.3 Arithmetic, Logical, and Shift Instructions

Syntax

DEC mem[reg

INC memlreg

DIV memlreg

IDIV memlreg

IMUL memlreg

MUL memlreg

NEG memlreg

SBB reg, memlreg

SBB memlreg, reg

SBB memlreg,numb

SUB re~memlreg

SUB memlreg,reg

SUB memlreg,numb

Table 4-5. (continued)

Result

Subtract 1 from memory or register.

Add 1 to memory or register.

Divide (unsigned) accumulator (AX or AL) by
memory or register. If byte results, AL = quo-
tient, AH = remainder. If word results,
AX = quotient, DX = remainder.

Divide (signed) accumulator (AX or AL) by
memory or register. Quotient and remainder
stored as in DIV.

Multiply (signed) memory or register by
accumulator (AX or AL). If byte, results in AH,
AL. If word, results in DX, AX.

Multiply (unsigned) memory or register by
accumulator (AX or AL). Results stored as
in IMUL.

Two's complement memory or register.

Subtract (with borrow) memory or register
from register.

Subtract (with borrow) register from memory
or register.

Subtract (with borrow) immediate data from
memory or register.

Subtract memory or register from register.

Subtract register from memory or register.

Subtract data constant from memory or
register.

B DIGITAL RESEARCH TM

4-7

4.3 Aridnnetic, Logical, and Shift lmtructiom Ccmcmrmt CP/M-86 Utilities Guide

Table 4-6. Logical and Shift Instructions

AND reg, mem]reg

AND memlre~reg

AND memlreg,numb

NOT mem[reg

OR reg, memlreg

OR m e m [~

OR mem]reg, numb

RCL memlreg,1

RCL mml -gCL

RCR memlregel

RCR memlreg~CL

ROL memlreg,1

ROL memlregbCL

ROR memlrt~l

ROR mem]regcCL

SAL memlre~l

Perform bitwise logical AND of a resister and
memory or feaster.

Perform bitwise logical AND of memory or
register and re~ster.

Perform bitwise logical AND of memory or
register and data constant.

Form one's complement of memory or register.

Perform bitwise logical OR of a register and
memory or register.

Perform bitwise logical OR of memory or regis-
ter and register.

Perform bitwise logical OR of memory register
and data constant.

Rotate memory or register 1 bit leh through
carry flag.

Rotate memory or register left through carry
flag; number of bits given by CL register.

Rotate memory or register 1 bit right through
carry flag,

Rotate memory or register right through carry
flag; number of bits given by CL register.

Rotate memory or register 1 bit left.

Rotate memory or regis~ left; number of bits
given by CL register.

Rotate memory or register 1 bit right.

Rotate memory or register right; number of
bits given by CL register.

Shift memory or t~ister 1 bit left; shift in
low-order zero bits.

4-8

Concurrent CP/M-86 Utilities Guide 4.3 Arithmetic, Logical, and Shift Instructions

Syntax

SAL mem[reg, CL

SAR memlreg,1

SAR memlreg,CL

SHL mem[reg,1

SHL mt~mlreg, CL

SHR memlreg,1

SHR mem]reg, CL

TEST re~mem]reg

TEST memlreg,reg

TEST memlreg, numb

XOR reg, memlreg

Table 4-6. (continued)

Result

Shift memory or register left; number of bits
given by CL register; shift in low-order zero
bits.

Shift memory or register 1 bit right; shift
in high-order bits equal to the original high-
order bit.

Shift memory or register right; number of bits
given by CL register; shift in high-order bits
equal to the original high-order bit.

Shift memory or register 1 bit left; shift in
low-order zero bits. Note that SHL is a different
mnemonic for SAL.

Shift memory or register left; number of bits
given by CL register; shift in low-order zero
bits. Note that SHL is a different mnemonic
for SAL.

Shift memory or register 1 bit right; shih in
high-order zero bits.

Shift memory or register right; number of bits
given by CL register; shift in high-order zero
bits.

Perform bitwise logical AND of a register and
memory or register; set condition flags, but do
not change destination.

Perform bitwise logical AND of memory regis-
ter and register; set condition flags, but do not
change destination.

Perform bitwise logical AND of memory regis-
ter and data constant; set condition flags, but
do not change destination.

Perform bitwise logical exdusive OR of a regis-
ter and memory or register.

m DIGITAL RESEARCH TM

4-9

4.S X r i ~ I.op:.l, .ad Shift w-.trmiom Concurrmt CP/M-86 Utilitle8 Guide

Table 4-6. (continued)

Syntax] Result
XOR mern]reg, reg Perform bitwise logical exclusive OR of mem-

ory register and register.

XOR mem[reg,numb Perform bitwise logical exclusive OR of mem-
ory register and data constant.

4.4 String Instruct ions

String instructions take zero, one, or two operands. The operands specify only the
'operant type, determining whether the operation is on bytes or words. If there are two
operands, the source operand is addressed by the SI register and the destination operand
~is addressed by the DI register. The Dl and SI registers are always used for addre~ing.
Note that for string operations, destination operands addressed by DI must always reside
in the Extra Segment (ES).

Table 4-7. String Instructions

Syntax] Result
CMPS mernlreg, mem[reg Subtract source from ds~ination; affect flags,

but do not return result.

CMPSB An alternate mnemonic for CMPS, which
~ u m ~ a byte o I ~ n d .

CMPSW An alternate mnemonic for CMP$, which
amumes a word operand.

LODS rnem]reg Transfer a byte or word from the source
operand to the accumulator.

LODSB An alternate mnemonic for LODS, which
assumes a byte operand.

LODSW An alternate mnemonic for LODS, which
assumes a word operand.

81 DIGITAL R F . . ~ C : H TM

4-10

Concurrent CP/M-86 Utillt/es Guide 4.4 Su-ing Instructions

Table 4-7.

Syntax

MOVS

MOVSB

MOVSW

SCAS

SCASB

SCASW

STOS

STOSB

STOSW

mem[reg, mem[reg

mem[reg

mem]reg

(continued)

Result

Move 1 byte (or word) from source to destina-
tion.

An alternate mnemonic for MOVS, which
assumes a byte operand.

An alternate mnemonic for MOVS, which
assumes a word operand.

Subtract destination operand from accumu-
lator (AX or AL); affect flags, but do not return
result.

An alternate mnemonic for SCAS, which
assumes a byte operand.

An alternate mnemonic for SCAS, which
assumes a word operand.

Transfer a byte or word from accumulator to
the destination operand.

An alternate mnemonic for STOS which
assumes a byte operand.

An alternate mnemonic for STOS which
assumes a word operand.

[] DIGITAL RESEARCI'P"

4-11

4.4 s , ~ I=trmie= Commmtt CP/M-86 U d l i ~ Guide

Table 4-8 defines prefixes for string instructions. A prefix repeats its string instruction
the number of times contained in the CX register, which is decremented by 1 for each
iteration. Prefix mnemonics precede the string instruction mnemonic in the statement line.

Table 4-8. Prefix Instructions

Syntax [Result
PEP

REPE

REPNE

REPNZ

REPZ

Repeat until CX register is zero.

Equal to REPZ.

Equal to REPNZ.

Repeat until CX register is zero and zero flag (ZF) is zero.

Repeat until CX register is zero and zero flag (ZF) is not zero.

4.5 Control Transfer Instructions

There are four classes of control transfer instructions:

n calls, jumps, and returns
• conditional jumps
• iterational control
• interrupts

All control transfer instructions cause program execution to continue at some new
location in memory, possibly in a new code segment. The transfer can be absolute or it
can depend upon a certain condition. Table 4-9 defines control transfer instructions. In
the definitions of conditional jumps, above and below refer to the relationship between
unsigned values. Greater than and less than refer to the relationship between signed
ValUes.

• DIGITAL KI~RARCI'W
4-12

Concurrmt CP/M-86 Utilities Guide 4.5 Control Transfer Instructions

Table 4-9.

Syntax I
CALL labd

CALL mem[reg16

CALLF label

CALLF mere

INT numb8

INTO

IRET

JA lab8

JAE lab8

JB lab8

JBE lab8

Control Transfer Instructions

Result

Push the offset address of the next instruction
on the stack; jump to the target label.

Push the offset address of the next instruction
on the stack; jump to location indicated by
contents of specified memory or register.

Push CS segment register on the stack, push the
offset address of the next instruction on the
stack (after CS), and jump to the target label.

Push CS register on the stack, push the offset
address of the next instruction on the stack,
and jump to location indicated by contents of
specified double word in memory.

Push the flag registers (as in PUSHF), dear TF
and IF flags, and transfer control with an in-
direct call through any one of the 256 interrupt-
vector elements. Uses three levels of stack.

If OF (the overflow flag) is set, push the flag
registers (as in PUSHF), dear TF and IF flags,
and transfer control with an indirect call
through interrupt-vector dement 4 (location
10H). If the OF flag is cleared, no operation
takes place.

Transfer control to the return address saved by
a previous interrupt operation and restore
saved flag registers, as well as CS and IP. Pops
three levels of stack.

Jump if not below or equal or above ((CF or
ZF) =0).

Jump if not below or above or equal (CF -- 0).

Jump if below or not above or equal (CF--- I).

Jump if below or equal or not above ((CF or
Z F) = I).

[] DIGITAL RESEARCH"
4-13

4.5 Com~ Tram~ lmeractiom Cmtcummt CP/M-86 U~itia Guide

Syntax

j c lab8

JCXZ lab8

j~ labs

JG lab8

JGE lab8

JL lab8

JLE lab8

JMP label

JMP memlregl6

JMPF label

JMPS lab8

JNA lab8

JNAE lab8

JNB lab8

JNBE lab8

JNc labs

JNE lab8

JNG lab8

Table 4-9. (coatinued)

Re.su/t

Slu~tc as J~ .

Jump m utrget label ff CX reEh~ b zero.

Jump if equal or zero (ZF = 1).

Jump if not leu or equal or grea~r (((SF xor
OF) or 7_~ = 0).

Jump if not less or greater or equal ((SF xor
oF) =o).

Jump if less or not greater or equal ((SF xor
OF)--1).

Jump if less or equal or not greater (((SF xor
OF) or ZF) = 1).

Jump co the target label.

Jump to location indicated by contents of
specked memory or register.

Jump to the target label, pouibly in another
code ~gment.

Jump to the target label within + 128 bytes
Erom instruction.

Same u JBE.

Same as Je.

Same as JAE.

Same as JA.

Same as JNB.

Jump if not equal or not zero (ZF-- 0).

Same as JLE.

• DIGITAL R.~S]~..~q.CI-'I"
4-14

Ccmcurrmt C~/M-86 Ut~ties Guide 4.5 Control Trans~ l n s ~

Table 4-9. (continued)

Syntax Result

JNGE lab8

JNL labs

JNLE labs

]NO labs

]NP labs

]NS lab8

JNZ lab8

JO labs

JP labs

JPE labs

JPO lab8

JS lab8

JZ lab8

LOOP lab8

LOOPE lab8

LOOPNE labs

LOOPNZ lab8

LOOPZ labs

RET

Same as JL.

Same as JGE.

Same as JG.

Jump if not overflow (OF-- 0).

Jump if not parity or parity odd.

Jump if not sign.

Same as JNE.

Jump if overflow (OF-- 1).

Jump if parity or parity even (PF-- 1).

Same as JP.

Same as JNP.

Jump if sign (SF- 1).

Same as JE.

Decrement CX register by one; jump to target
label if CX is not zero.

Decrement CX register by one, jump to target
label if CX is not zero and the ZF flag is set.
Loop while zero or loop while equal.

Decrement CX register by one; jump to target
label if CX is not zero and ZF flag is cleared.
Loop while not zero or loop while not equal.

Same as LOOPNE.

Same as LOOPE.

Return to the return address pushed by a pre-
vious CALL instruction; increment stack
pointer by 2.

U DIGITAL RESEARCH TM

4-15

4.5 Control Tmmfer Imu-nctiom ~ t GPlM.86 UuT~= Guide

Table 4-9. (continued)

Syntax [Rc~lt
n u m b RET

RETF

RETF numb

Remm to the address pushed by a previous
CALL; increment stack pointer by 2 + numb.

Remm to the addreu pushed by a previous
CALLF insm~ction; increment stack pointer
by4.

Return m the address pushed by a previous
CALLF insmacfion; increment stack pointer by
4 + numb.

4.6 Processor Cont ro l Instructions

Processor control instructions manipulate the flag registers. Moreover, some of these
instructions synchronize the 8086 CPU with external hardware.

CLC

CLD

CLI

CMC

ESC

lILT

Table 4-10. Procusor Control

Syntax] Remit

numb8,mem[reg

Clear CF flag.
Clear DF flag, causing string instructions m
aum-incremem the operand Iminmrs.

Clear IF flag, disabling mukable ext=nml
interrupts.

Complement CF flag.

Do no operation othe~ than compute the effec-
tive address and phcc it on the address bus
(ESC is used by the g087 numeric coprocessor).
numb8 must be in the range 0, 63.

8086 processor enters halt state until an inter-
rupt is recognized.

m DIGITAL RESEARCH"
4-16

Ctmcurr~t CPIM=86 Utilities G~mle 4.6 l h ' o c e s m r C o n t r o l ~ e n s

LOCK

NOP

STC

STD

STI

WAIT

Table 4-10. (continued)

R~ult

PREHX instruction; cause the 8086 processor
to assert the buslock signal for the duration of
the operation caused by the following instruc-
tion. The LOCK prefix instruction can precede
any other instruction. Buslock prevents co-
processors from gaining the bus; this is useful
for shared-resource semaphores.

No operation is performed.

Set CF flag.

Set DF fla~ causing string instructions to auto-
decrement the operand pointers.

Set IF flag, enabling maskable external
interrupts.

Cause the 8086 processor to enter a wait state
if the signal on its TEST pin is not asserted.

m DIGITAL RF.,SEAKCH ~
4 - 1 7

4.7 Mamaa~ DiHcrm~ Caaoarrmt CP/M46 Utilltim Guide

4.7 Mnemonic D/ffcrcnces

The CP/M 8086 assembler uses the same instruction mnemonics as the Iatei 8086
assembler except for explicitly specifying far and short jumps, calls, and returns. The
following table shows the four differences:

Table 4-11. Maaaonic Differenc~

Mnemonic Function [CP/M I Intel
Intruegment short jump: JM_~ JMr

Interscgment jump: JMPF JMP

Interscgment return: RETF KET

Intenegment call: CALLF CALL

End o[Section 4

• DIGITAL RFJRARCI'I ~
4-1g

Section 5
Code-macro Facilities

5 .1 I n t r o d u c t i o n t o C o d e - m a c r o s

A macro simplifies using the same block of instructions over and over again throughout
a program. ASM-86 does not support traditional assembly-language macros, but it does
allow you to define your own instructions by using the Code-macro directive. An ASM-86
Code-macro sends a bit stream to the output file, adding a new ins~uction to the
assembler.

Like traditional macros, Code-macros are assembled wherever they appear in assembly
language code, but there the similarity ends. Traditional macros contain assembly
language instructions, but a Code-macro contains only Code-macro directives. Macros
are usually defined in the user's symbol table; ASM-86 Code-macros are defined in the
assembler's symbol table.

Because ASM-86 treats a Code-macro as an instruction, you can start Code-macros
by using them as instructions in your program. The example below shows how to start
MAC ~, an instruction defined by a Code-macro.

×CHG
MAC
MUL

0

6X,WORD3
OAR1,PAR2
AX,WORD4

Note that MAC accepts two operands. When MAC was defined, these two operands
were also classified by type, size, and so on by defining MAC's formal parameters. The
names of formal parameters are not fixed. They are stand-ins that are replaced by the
names or values supplied as operands when the Code-macro starts. Thus, formal
parameters hold the place and indicate where and how to use the operands.

B DIGITAL RESEARCH"
5-1

S.1 Imrodm:tm m ~ Cmmmrmt CP/M-86 Utili~ Guide

The deletion of a Code-macro starts with a line specifying its name and any formal
parsmete~:

CODEMACRO name [formal parameter list]

where the optional formal parameter list is defined:

formal name : specifier letter [modifier letter] [range]

The formal name is not fixed, but represent a place holder. If formal parameter list is
present, the spec/fier letter is required and the modifier letter is optional. Possible
specifiers are A, C, D, E, M, 11, S, and X. Possible modifier letters are b, d, w, and sb.
The ammbler ignores cue except within strings, but this section shows ,peciflers in
upper-ca~ and modifie~ in lower-c~e. Following sectiom describe specifie~, modi~crB,
and the optional range in detail

The body of the Code-macro describes the bit pattern and formal parameters. Only
the following directives are legal within Code-macrm:

SEGHX
NOSEGFIX
MODRM
RELB
RELW
DB
DW
DD
DBIT

These directives are unique to Code-macrm. Throe that appear to duplicate ASM-86
div.'ctives (DB, DW, and DD) have di6erem meanings in Code-macro context. These
directives are detailed in later sections. The definition of a Code-macro ends with a line:

E n d M

CodeMacro, EndM, and the Code-macro d/rectives are all reserved words. Code-
macro definition syntax is defined in Backus-Naur-like form in Appendix G. The
following examples are typical Code-macro definitions.

Ill DIGITAL RESEARCH"
5-2

Concurrent CIVM-86 Utilities Guide 5.1 Introduction to Code-macrm

CodeMaoro AAA
DB 37H

EndM

CedeMaoro DIV d i v i s o r : E b
SEGFIX d l v i s o r
D5 SFH
MODRM d l v i s o r

EndM

CodeMaoro ESC opoode: Db(O,83),srotEb
SEGFIX s ro
DBIT 5 (1 5 H) ~ 3 (o p o o d e (3))
MODRM oPoode,sro

EndM

5 .2 Specif iers

Every formal parameter must have a specifier letter that indicates the type of operand
needed to match the formal parameter. Table 5-1 defines the eight possible specifier
letters.

Table 5-1. Code-macro O l ~ a n d Specifiers

Letter] Operand Type

A

C

D

E

M

R

S

X

Accumulator register, AX or AL.

Code, a label expression only.

Data, a number to be used as an immediate value.

Effective address, either an M (memory address) or an R (register).

Memory address. This can be either a variable or a bracketed register
expression.

A general register only.

Segment register only.

A direct memory reference.

DIGITAL RESEARCH TM

5-3

5.3 Modifien Concurrmt CP/M-86 Utilities Guide

5.3 Modifiers

The optional modifier letter is a further requirement on the operand. The meaning of
the modifier letter depends on the type of the operand. For variables, the modifier requires
the operand to be of type b for byte, w for word, d for double-word, and sb for signed
byte. For numbers, the modifiers require the number to be of a certain size: b for-256
to 255 and w for other numbers. Table 5-2 summarizes Code-macro modifiers.

Table 5-2.

Var/ables

Mod/~er I Type

b byte

W word

d dword

sb signed
byte

Code-macro Operand Modifiers

Numbers

Modifier I Size

b -256 to 255

w any',hing rise

5.4 Range Specifiers

The optional range is specified in parentheses by one expression, or by two expressions
separated by a comma. The following are valid formats:

(numberb)
(register)
(numberb,numberb)
(uumberb,register)
(register,numberb)
(register,register)

Numberb is 8-bit number, not an address. The following example specifies that the
input port must be identified by the DX register:

CodeMaoro IN ds~:Aw,Por~:Rw(DX)

5-4

Concurrent CP/M-86 Utilities Guide 5.4 Range Specifiers

The next example specifies that the CL register is to contain the count of rotation:

CodeMaoro ROR dst:Emtoount:Rb(CL)

The last example specifies that the opcode is to be immediate data and ranges from 0 to
63, inclusive:

CodeMaoro ESC oPoode:Db(OB3),adds:Eb

5.5 C o d e - m a c r o Direct ives

Code-macro directives define the bit pattern and make further requirements on how
the operand is to be treated. Directives are reserved words. Those that appear to duplicate
assembly language instructions have different meanings in a Code-macro definition.
Only the nine directives defined here are legal in Code-macro definitions.

5.5.1 SEGFIX

If SEGFIX is present, it instructs the assembler to determine whether a segment-over-
ride prefix byte is needed to access a given memory location. If so, it is output as the
first byte of the instruction. If not, no action is taken. SEGFIX takes the form:

SEGFIX formal name

where formal name is the name of a formal parameter that represents the memory
address. Because it represents a memory address, the formal parameter must have one
of the specifiers E, M, or X.

5.5.2 NOSEGFIX

Use NOSEGFIX for operands in instructions that must use the ES register for that
operand. This applies only to the destination operand of these instructions: CMPS,
MOVS, SCAS, and STOS. The form of NOSEGHX is

NOSEGFIX segreg,formal name

m DIGITAL RESEARCH TM

5-5

5.5 Code-mac~o Dircctiv~ C.mmarrmt QVM-86 Utilitia Guide

where segreg is one of the segment registers ES, CS, SS, or DS and formal name is the
name of the memory-addrees formal parameter, which must have a specifier F.., M, or
X. No code is generated from this directive, but an error check is performed. The
following is an example of NOSEGFIX use:

CodeMaore MOVS si__ptr:Ew,di~p~r 'Ew
NOSEGFIX ES,di_p~ r
SEGFIX l i _ p t r
DD DASH

EndM

5.5.3 MODRM

This directive iustructs the assembler to generate the MODRM byte that follows the
opcode byte in many 8086 instructions. The MODRM byte contains either the indexing
type or the register numbex to be used in the instruction. It also specifies the reghter to
be used or gives more information to specify an instruction.

The MODRM byte carries the information in three tlelds. The rood field occupies the
two mint signiticant bita of the byte and combines with the register memory field to
form 32 po~ible values: 8 registers and 24 indexing modes.

The reg fidd occupies the three next bits following the mod field. It spccifiea either a
regimr number or three more bits of opcode information. The meaning of the reg field
is determined by the opcode byte.

The register memory field occupies the last three bits of the byte. It spedfies a register
u the location of an operand or forms a part of the addrm-mode in combination with
the rood field described above.

For further information on 8086 instructions and their bit pattens, see the Inte18086
Assonbly Language Programmin 8 Manual and the Intel 8086 Family User's Manual.

The forms of MODRM are:

MODRM formal name, formal name
MODRM NUMBER7, formal name

IDBE~g.I~;F-M~.CH"
5-6

Concurrent CP/M-86 Udfida Guide 5.5 Code-macro Dirccdva

where NUMBER7 is a value 0 m 7 indusive, and formal name is the name of a formal
parameter. The following examples show how m use MODRM:

CodeMacrc RCR d s t : E w , c o u n t : R b (C L)
SEGFIX d s t
DB OD3H
MODRH 3~ds¢

EndM

CodeMacro OR d s t : R g t s r c : E w
SEGFI× s Pc
DB 05H
MODRH ds¢ , s rc

EndM

5.5.4 RELB and RELW

These directives, used in IP-reladve branch instructions, instruct the assembler to
generate displacement between the end of the instruction and the label supplied as an
operand. RELB generates one byte and RELW two bytes of displacement. The directives
take the following forms:

RELB formal name
RELW formal name

where formal name is the name of a formal parameter with a C (code) specifier. For
example,

CcdeMacro LOOP P l a c e : C b
DB OE2H
RELB P l a c e

EndM

i DIGITAL RESEARCH"

5-7

5.5 Code-ms~o Directives Concurrent CP/M-86 UtiEtia Guide

5.5.5 DB, DW, and DD

These directives differ from those that occur outside of Code-macros. The forms of
the directives are

DB ~rmalname I NUMBERB
DWformalnamelNUMBERW
DD ~rmalnarne

where NUMBERB is a single-byte number, NUMBERW is a two-byte number, and
formal name is a name of a formal parameter. For example,

CodeMaoro XDR dst:Ew,sro:Db
8EGFIX ds$
DB BIH
MODRM B~ds~
DW s t 0

EndM

5.5.8 DBIT

This directive manipulates bits in combinations of a byte or less. The form is

DBIT field description[,field description]

where a field description has two forms:

number combination
number (formal name(rshift))

number ranges from I to 16 and specifies the number of bits to be set. Combination
specifies the desired bit combination. The total of all the numben listed in the field
descriptions must not exceed 16. The second form shown above contains formal name,

DIGITAL R.F..SEARCI"I ~

5-8

Coatam=t C~/M-86 Udlida Guide $.S Code-mKro Directives

a formal parameter name instructing the assembler to put a certain number in the
spec/fied position. This number usually refers to the register specified in the first line of
the Code-macro. The numbers used in this spedal case for each register are

AL: 0
CL: 1
DL: 2
BL: 3

AH: 4
CH: 5
DH: 6
BH: 7
AX: 0
CX: 1
DX: 2
BX: 3
SP: 4
BP: 5
SI: 6

DI: 7
ES: 0
CS: 1
SS: 2

DS: 3

A rshi~ contained in the innermmt parentheses specifies a number of right shifts.
For example, 0 specifies no shift, 1 shifts right one bit, 2 shifts fight two bits, and so
on. The following definition uses this form:

CodeMaoro DEC d s t : R v
DDIT 5 (S H) , 3 (d s ¢ (O))

EndM

M DIGITAL RESEARCH TM

5-9

5.5 ~ ~ CoEunmt CWM-86 UulMes Geide

The first five bits of the byte have the value 9 R If the rema/n/ng bits are zero, the hex
valve of the byte will be 48I-L If the/nm~ction

DEC DX

is assembled and DX has a value of 2H, then 48H + 2H = 4AH, the final value of the
byte for execut/on. If this sequent: had been present in the de i s t /on

DBITS (8 H) ~ 3 (d s t (1) ~

then the register number would have been shifted right once, and the result would had
been 48H + 1H = 49H, which is erroneous.

• DICJI'AL lt~.,~CH ~

Section 6
DDT-86

6.1 D D T - 8 6 O p e r a t i o n

The DDT-86 program allows you to test and debug programs interactively in a
Concurrent CP/M-86 environment. You should be familiar with the 8086 processor,
ASM-86, and the Concurrent CP/M-86 operating system before using DDT-86.

6.1.1 Starting DDT-86

Start DDT-86 by entering a command in one of the following forms:

DDT86
DDT86 tilename

The first command simply loads and executes DDT-86. After displaying its sign-on
message and the prompt character (-), DDT-86 is ready to accept operator commands.
The second command is similar to the tint, except that after DDT-86 is loaded it loads
the file specified by tilename. If the tiletype is omitted from the filename, .CMD is
assumed. Note that DDT-86 cannot load a file of type .H86. The second form of the
starting command is equivalent to the sequence:

A>DDT86
D D T B 6 x . x

-E f i l e n a m e

At this point, the program that was loaded is ready for execution.

6.1.2 DDT-86 Command Conventions

When DDT-86 is ready to accept a command, it prompts the operator with a hyphen (-).
In t~sponse, you can type a command line, or a CYRL-C to end the debugging session.
See Section 6.1.4. A command line can have up to 64 characters and must terminate with
a carriage return. While entering the command, use standard CP/M line-editing functions,
such as CTRL-X, CTRL-H, and CTRL-R, to correct typing errors. DDT-86 does not process
the command line until you enter a carriage return.

B DIGITAL RESEARCH ~

6-1

6.1 DDT-86 Operation ~ t { ~ / M - 8 6 U ~ t i ~ G u i d e

The first character of each command line determines the command action. Table 6-1
summarizes DDT-86 commands. DDT-86 commands are defined individually in
Section 6.2.

Table 6-1. DDT-86 Command Summary

Command [A ~ o n

A
B
D
E
F
G
H
I
L
M
qI
qo
R
S
SR
T
U
V
W
X

Enter assembly language statements.
Compare blocks of memory.
Display memory in hexadecimal and ASCII.
Load program for execution.
Fill memory block with a constant.
Begin execution with optional breakpoints.
Hexadecimal arithmetic.
Set up File Control Block and command tail.
List memory using 8086 mnemonics.
Move memory block.
Read FO port.
Writt FO port.
Read disk file into memory.
Set memory to new values.
Search for string.
Trace program execut/on.
Untraced program monitoring.
Show memory layout of disk file read.
Write contents of memory block to disk.
Examine and modify CFU state.

The command character can be followed by one or more arguments. These can be
hexadecimal values, filenames, or other information, depending on the command.
Arguments are separated from each other by commas or spaces. No spaces are allowed
between the command character and the first argument.

m DIGITAL RESEARCH ~

Concnrrmt CP/M-86 Utilities Guide 6.1 DDT-86 Opemtioa

6.1.3 Specifying a 20-Bit Address

Most DDT-86 commands require one or more addresses as operands. Because the
8086 can address up to I megabyte of memory, addresses must be 20-bit values. Enter
a 20-hit address as follows:

SSSS:0000

where ssss represents an optional 16-bit segment number and oooo is a 16-bit offset.
DDT-86 combines these values to produce a 20-bit effective address as follows:

ssssO
+ o o o o

The optional value ssss can be a 16-bit hexadecimal value or the name of a segraent
register. If a segment register name is specified, the value of ssas is the contents of that
register in the user's CPU state, as indicated by the X command. If omitted, the value
of ssss is a default value appropriate to the command being executed, as described in
Section 6.3.

6.1.4 Terminating DDT-86

Terminate DDT-86 by typing a CTRL-C in response to the hyphen prompt. This
returns control to the CCP. Note that Concurrent CP/M-86 does not have the SAVE
facility found in CP/M for 8-bit machines. Thus if DDT-86 is used to patch a Ele, write
the Ele to disk using the W command before exiting DDT-86.

6.1.5 DDT-86 Operation with Interrupts

DDT-86 operates with interrupts enabled or disabled and preserves the interrupt state
of the program being executed under DDT-86. When DDT-86 has control of the CPU,
either when it starts, or when it regains control from the program being tested, the
condition of the interrupt flag is the same as it was when DDT-86 started, except for a
few critical regions where interrupts are disabled. While the program being tested has
control of the CPU, the user's CPU state, which can be displayed with the X command,
determines the state of the interrupt flag.

I DIGITAL RESEARCH"
6-3

6.2 DDT-86 Ctmmmmh ~ t CP/M-86 Utmtl¢, Guide

6.2 D D T - 8 6 C o m m a n d s

This section defines DDT-86 commands and their arguments. DDT-86 commands
g/ve you control of program execution and allow you to display and modify system
memory and the CPU state.

6.2.1 The A (Astemble) Command

The A command assembles 8086 mnemonics directly into memory. The form is

As

where s is the 20-bit address where assembly is to start. DDT-86 responds to the A
command by displaying the address of the memory location where assembly is to begin.
At this point the operator enters assembly language mttements as ~ b e d in Section
2.8. When a statement is entered, DDT-86 convem it m binary, places the values in
memory, and displays the address of the next available memory location. This process
continues until you enter a blank llne or a line containing only a period.

DDT-86 responds to invalid sutteanents by displaying a question mark ? and redisplay-
ins the current aucmbly address.

6-2.2 The B (Block Compare) Command

The B command compares two blocks of memory and displays any differences on the
screen. The form is

Bsl,fl,s2

where sl is the 20-bit address of the start of the first block; fl is the offi~ of the final
byte of the first block, and s2 is the 20-bit eddress of the start of the second block. If
the segment is not specified in s2, the same value is used that was used for sl.

Any differences in the two blocks are displayed at the screen in the following form:

s1:ol bl s2:o2 b2

where si :ol and s2:o2 are the addresses in the blocks; bl and b2 are the values at the
indicated addresses. If no differences are displayed, the blocks are identical.

n DIGITAL RESEARCH TM

6-4

Coeoart~t CP/M-86 Utilitla Guide 6.2 DDT-86 Commuds

6.2.3 The D (Display) Command

The D command displays the contents of memory as 8-bit or 16-bit values and in
ASCII. The forms are

D
Ds
Ds,f
DW
DWs
DWs,f

where s is the 20-bit address where the display is to start, and f is the 16-bit offset within
the segment specified in s where the display is to finish.

Memory is displayed on one or more display lines. Each display line shows the values
of up to 16 memory locations. For the first three forms, the display line appears as
follows:

ssss:oooo bb b b . . . bb c c . . . c

where ssss is the segment being displayed and oooo is the offset within segment ssss.
The bb's represent the contents of the memory locations in hexadecimal, and the c's
represent the contents of memory in ASCII. Any nongraphic ASCII characters are
represented by periods.

In response to the first form shown above, DDT-86 displays memory from the current
display address for 12 display lines. The response to the second form is similar to the
first, except that the display address is first set to the 20-bit address s. The third form
displays the memory block between locations s and f. The next three forms are analogous
to the first three, except that the contents of memory are displayed as 16-bit values,
rather than 8-bit values, as shown below:

S S S S : O 0 0 0 W w w ~ r W ' W ' W V ~ . . . W W W W ' C C C C . . . C C

During a long display, you can abort the D command by typing any character at the
console.

[] DIGr rAL RESF.ARCH ~

6-5

6.2 DDT-86 Commu~ ~ t CP/M-86 Ua~im Guide

6.2.4 The E (Load for Execution) Command

The E command loads a file into memory m that a subsequent G, T, or U command
can begin program execution. The E command takes the forms:

E filename
E

where filename is the name of the file to be loaded. If no filetype is specified, .CMD is
assumed. The contenm of the user segment registers and IP register are altered according
to the information in the header of the ~le loaded.

An E command releases blocks of memory tUomted by previous E or R commands
or by programs executed under DDT-86. Thus only one file at a time can be loaded/or
execution.

When the load is complete, DDT-86 displays the sm_rt and end addresses of each
segment in the file loaded. Use the V command to red,play this information at a late~ time.

If the file does not exist or cannot be successfully loaded in the available memory,
DDT-86 issues an error meuage. Files are dosed after an E command.

Ewith no filenLme bees all mmmry allomtiom made by DDT-86, without loedin8 a file.

6.2.5 The F (Fill) Command

The F command fills an area of memory with a byte or word constant. The forma are

Fs~f,b
FWs, f,w

where s is a 20-bit starting address of the block to be filled, and f is a 16-bit offiet of
the final byte of the block in the segment specified in s.

In respome to the first form, DDT-86 stores the 8-bit value b in locafiuns s through f.
In the second form, the 16-bit value w is stored in locations s through f in standard form,
low 8 bits tint, followed by high 8 bits.

If s is greater than f or the value b is greater than 255, DDT-86 responds with a
question mark. DDT-86 issues an error message if the value stored in memory cannot
be read back successfully, indicating faulty or nonexistent RAM at the location indicated.

• DIGITAL JU~SRA]tCH"
6-6

Concurrent CP/M-86 Utilities Guide 6.2 DDT-86 Commands

6.2.6 The G (Go) Command

The G command transfers control to the program being tested and optionally sets one
or two breakpoints. The forms are

G
G,bl
G,bl,b2
Gs
Gs,bI
Gs,bl,b2

where s is a 20-bit address where program execution is to start, and b1 and b2 are 20-bit
addresses of breakpoints. If no segment value is supplied for any of these three addresses,
the segment value defaults to the contents of the CS register.

In the first three forms, no starting address is specified, so DDT-86 derives the 20-bit
address from the user's CS and IP registers. The first form transfers control to your
program without setting any breakpoints. The next two forms set one and two break-
points, respectively, before passing control to your program. The next three forms are
analogous to the first three, except that your CS and IP registers are first set to s.

Once control has been transferred m the program under test, it executes in real time
until a breakpoint is encountered. At this point, DDT-86 regains control, dears all
breakpoints, and indicates the address at which execution of the program under test was
interrupted as follows:

~'SSSS:OO00

where ssss corresponds to the CS, and oooo corresponds to the IP where the break
occurred. When a breakpoint returns control to DDT-86, the instruction at the break-
point address has not yet been executed.

B DIGITAL RESEARCH TM

6-7

6.2 DDT-86 Commands Concurrent CP/M-86 Utilities Guide

6.2.7 The H (Hexadechnal Math) Command

The H command computes the sum and difference of two 16-bit values. The form is
shown below:

Ha,b

where a and b are the values the sum and difference nf which are being computed.
DDT-86 displays the sum (ssss) and the difference (dddd) truncated to 16 bits on the
next line, as shown below:

s m dddd

6.2.8 The I (Input Command Tail) Command

The I command prepares a File Control Block and command tail buffer in DDT-86's
Base Page and copies this information into the Base Page of the last file loaded with the
E command. The I command takes the form:

I command tail

where command tail is a character string which usually contains one or more filenames.
The first filentme is parsed into the defimlt File Control Block at 005CH. The optional
semnd filenarae, if specified, is parted into the second part of the default File Control
Block beginning at 006CH. The characters in command tail are also copied into the
default command buffer at 0080H. The length of command tail is stored at 0080H,
followed by the character string ending with a binary zero.

If a file has been loaded with the E command, DDT-86 copies the File Control Block
and command buffer from the Base Page of DDT-86 to the Base Page of the program
loaded. The location of DDT-86's Base Page can be obtained from the 16-bit value at
absolute memory location 0:6. The location of the Base Page of a program loaded with
the E command is the value displayed for DS upon completion of the program load.

6.2.9 The L (List) Command

The L command lism the contents of memory in assembly language. The forms are

L
Ls
Ls,f

I I DIGITAL RF.SEARCH =
6-8

Concurrent CP/M-86 Utifities Guide 6.2 DDT-86 Commands

where s is a 20-bit address where the list is to start, and f is a 16-bit offset within the
segment specified in s where the list is to finish.

The first form lists twelve lines of disassembled machine code from the current list
address. The second form sets the list address to s and then lists twelve lines of code.
The last form lists disassembled code from s through f. In all three cases, the list address
is set to the next unlisted location in preparation for a subsequent L command. When
DDT-86 regains control from a program being tested (see G, T, and U commands), the
list address is set to the current value of the CS and IP registers.

Long displays can be aborted by typing any key during the list process. Or, enter
CTRL-S to halt the display temporarily.

6.2.10 The M (Move) Command

The M command moves a block of data values from one area of memory to another.
The form is

Ms,f,d

where s is the 20-bit starting address of the block to be moved, f is the offset of the final
byte to be moved within the segment described by s, and d is the 20-bit address of the
first byte of the area to receive the data. If the segment is not specified in d, the same
value is used that was used for s. Note that if d is between s and f, part of the block
being moved will be overwritten before it is moved because data is transferred starting
from location s.

6.2.11 The QI, QO (0ueryl /O) Commands

The QI and QO commands allow access to any of the 65,536 input/output ports. The
QI command reads data from a port; the QO command writes data to a port. The forms
of the QI command are

Qln
QIWn

where n is the 16-bit port number. In the first case, DDT-86 displays the 8-bit value read
from port n. In the second case, DDT-86 displays a 16-bit value from port n.

i DIGITAL RESEARCH TM

&9

6.2 DDT-86 Commands Concurrent CP/M-86 Utiliti~ Guide

The forms of the QO command are

QOn,v
QOWn,v

where n is the 16-bit port number, and v is the value m output. In the first case, the 8-bit
value v is written to port n. If v is greater than 255, DDT-86 responds with a question
mark. In the second case, the 16-bit value v is written to port n.

6.2.12 The R (Read) Command

The R command reads a file into a contiguous block of memory. The forms are

R filengme
R filename,s

where filename is the name and type of the me to be read, and s is the location to which
the file is read. The first form lets DDT-86 determine the memory location into which
the file is read.

The second form tells DDT-86 to read the file into the memory segment beginning at
s. This addreu can have the standard form (ssss:oooo). The low-order four bits of s are
auumed to be zero, so DDT-86 reads file, on a paragraph boundary. If the memory at
s is not available, DDT-86 issues the message:

MEMORY REOUEBT DENIED

DDT-86 reads the file into memory and displays the start and end ad&e~es of the
block of memory occupied by the file. A V command can redisplay this information at
a later time. The default display pointer (f or subsequent D commands) is set to the start
of the block occupied by the file.

The R command does not free any memory previously allocated by another R or E
command. Thus a number of files can be read into memory without overlapping.

If the file does not exist or there is not enough memory to load the file, DDT-86 issues
an error message. Files are dosed after an R command, even if an error occurs.

U DIGrI',&T.. R,~,~EAR(=H"
6-10

Concurrent CP/M-86 Utilities Guide 6.2 DDT-86 Commands

The following are examples of the R command, followed by a brief explanation.

r d d t 8 6 , o m d Read file DDT86.CMD into memory.

r t • s ~ Read file TESTinto memory.

r t e s t t 1000 -" 0 ReadfileTESTintomemory, starting
at location 1000:0.

6.2.15 The S (Set) Command

The S command can change the contents of bytes or words of memory. The forms are

Ss
SWs

where s is the 20-bit address where the change is to occur.

DDT-86 displays the memory address and its current contents on the following line.
In response to the first form, the display is

ssss:oooo bb

In response to the second form, the display is

SSSS-'OOOO

where bb and wwww are the contents of memory in byte and word formats, respectively.

In response to one of the above displays, the operator can choose to alter the memory
location or to leave it unchanged. If a valid hexadecimal value is entered, the contents
of the byte or word in memory is replaced with the value. If no value is entered, the
contents of memory are unaffected, and the contents of the next address are displayed.
In either case, DDT-86 continues to display successive memory addresses and values
until either a period or an invalid value is entered.

DDT-86 issues an error message if the value stored in memory cannot be read back
successfully, indicating faulty or nonexistent RAM at the location indicated.

m DIGITAL I ~ E A K C H TM

6-11

6A DDT-86 C..ommmds Concurrmt CP/M-86 Uttlitu Guide

6.2.14 The SR (Search) Command

The SR (Search) mmmand searches a block of memory for a 8iven pattern of numeric
or ASCII values and lists the addresses where the pattern occurs. The form is

SRs, f, p a t u ~

where s is the 20-bit start~ 8 address of the block to be searched, f is the offset of the
address of the block, and pattern is a list of one or more hexadecimal values and/or

ASCII strings. ASCII strings are enclosed in double quotes and can be any length.
For example,

S R 2 0 0 , 3 0 0 ~"Th! fo rM" rod ~O-

For each occurrence of pattern, DDT-86 displays the 20-bit address of the first byte
of the pattern, in the form:

SSSS:OOOO

If no addresses are listed, pattern was not found.

6.2.15 The T (Tx'~e) Command

The T command traces program execution for 1 to 0FFFFH program steps. The
forms are

T
Tn
TS
TSn

where n is the number ofinstructious to execute before returnin 8 control to the console.

Before an ins~uction is executed, DDT-86 displays the current CPU state and the
disassembled instruction. In the £trst two form~ the segment registers are not displayed,
allowing the entire CPU state to be displayed on one line. The next two forms are
analogous to the tint two, except that all the registers are displayed, forcing the disassem-
bled iusn'uction to be displayed on the next line, as in the X command.

• DIGITAL U~S~AKa'I ~

6-12

~ t CP/M-86 Utilitia Guide 6.2 DDT-86 Commands

In all of the forms, control transfers to the program under test at the address indicated
by the CS and IP register. If n is not specified, one instruction is executed. Otherwise,
DDT-86 executes n instructions, displaying the CPU state before each step. A long trace
can be aborted before n steps have been executed by pressing any character at the console.

After a T command, the fist address used in the L command is set to the address of
the next insmxction to be executed.

Note that DDT-86 does not trace through a BDOS interrupt instruction because
DDT-86 itself makes BDOS calls, and the BDOS is not reentrant. Instead, the entire
sequence of instructions from the BDOS interrupt through the return from BDOS is
treated as one traced ins~uction.

6.2.16 The U (Untrace) Command

The U command is identical to the T command except that the CPU state is displayed
ordy before the first instruction is executed, rather than before every step. The forms are

U
Un
US
USn

where n is the number of instructions to execute before returning control m the console.
The U command can be aborted before n steps have been executed by pressing any key
at the console.

6.2.17 The V (Value) Command

The V command displays information about the last file loaded with the E or R
commands. The form is

V

If the last file was loaded with the E command, the V command displays the start and
end addresses of each of the segraents contained in the file. If the last file was read with
the R command, the V command displays the start and end addresses of the block of
memory where the file was read. If neither the R nor E commands have been used,
DDT-86 responds to the V command with a question mark.

[] DIGITAL RESEAKCH TM

6-13

6.2 DDT-86 Commands ~ t CP/M-86 Utilities Cmide

6.2.18 The W (Write) Command

The W command writes the contents of a contiguous block of memory to disk. The
forms are

W filename
W filename,s,f

where filename is the filename and filetype of the disk file to receive the data, and s and
f are the 20-bit first and last addresses of the block m be written. If the segment is not
specified in f, DDT-86 uses the same value that was used for s.

If the first form is used, DDT-86 assumes the s and f values from the last file read with
an R command. If no file was read with an R command, DDT-86 responds with a
question mark. This form is useful for writing out files after patches have been installed,
assuming the overall length of the file is unchanged.

In the second form where s and f are specified as 20-bit addresses, the low four bits
of s are assumed m be 0. Thus the block being written must always start on a paragraph
boundary.

If a file by the name specified in the W command already exists, DDT-86 deletes it
before writing a new file.

6.2.19 The X (Examine CPU State) Command

The X command allows the operator to examine and alter the CPU state of the
program under test. The forms are

X
Xr
Xf

where r is the name of one of the 8086 CPU registers, and f is the abbreviation of one
of the CPU flags. The first form displays the CPU state in the format:

AX BX C X . . , .~ E5 IP
~ X X X X XXXX X X X X . . . X X X X IOO~Z X] O X

instruction

i t DIGITAl.]~I~..AKCi~'

6-14

Conctmmat CP/M-86 Ut]lltim Guide 6.2 DDT-86 Commm&

The nine hyphens at the beginning of the line indicate the state of the nine CPU flags.
F~ch position can be a hyphen, indicating that the corresponding flag is not set (0), or
a l-character abbreviation of the flag name, indicating that the flag is set (I). The
abbreviations of the flag names are shown in Table 6-2.

Instruction is the disassembled instruction at the next location m be executed, indicated
by the CS and IP registers.

Table 6-2. Flag Name Abbreviations

Character] Name
O Overflow
D Direction
I Interrupt Enable
T Trap
S Sign
Z Zero
A Auxiliary Carry
P Parity
C Carry

The second form allows the operator to alter the registers in the CPU state of the
prosram being tested. The r following the X is the name of one of the 16-bit CPU registers.
DDT-86 responds by displaying the name of the register, followed by its current value.
If a carriage return is typed, the value of the register is not changed. If a valid value is
typed, the contents of the register are changed m that value. In either case, the next
register is then displayed. This process continues until a period or an invalid value is
entered, or until the last register is displayed.

The third form allows the operator m alter one of the flags in the CPU state of the
program being tested. DDT-86 responds by displaying the name of the flag, followed
by its current state. If a carriage remm is typed, the state of the flag is not changed. If a
valid value is typed, the state of the flag is changed to that value. Only one flag can be
examined or altered with each Xf command. Set or reset flags by entering a value of I or 0.

After an X command, the type1 and type2 segment values are set to the contents of
the CS and DS registers, respectively.

[] DIGITAL RESEAKCI'I TM

6-15

6.3 Ddnl t SeSmmt Values Coamrrmt CP/M-86 Utilities Guide

6.3 Default Sesment Values

DDT-86 has an internal mechanism that keeps track of the ~arttmr sesment value,
making segment specification an optional part of a DDT-86 command. DDT-86 divides
the command set into two types of commands, according m which sesment a command
defaults if no segment value is s p e ~ e d in the command line.

The first type of command pertains m the Code Segment: A (Assemble), L (List
Mnemonics), and W (Write). These commands use the internal type1 segment value if
no segment value is specified in the command.

When started, DDT-86 sets the type1 segment value to 0 and changes it when one of
the following actions is taken:

• When a file is loaded by an E command, DDT-86 sets the type1 segment value
to the value of the CS register.

• When a file is read by an R command, DDT-86 sets the typel sesment value to
the base segment where the file was read.

• After an X command, the type1 and type2 segment values are set to the contents
of the CS and DS registers, respectively.

• When DDT-86 resalns control from a nser progrttm after a G, T or U command,
it sets the typel segment value m the value of the CS register.

• When a segment value is specified explicitly in an A or L command, DDT-86
sets the type1 segment value to the segment value specified.

The second type of command pertains to the Data Sesment: B (Block Compare),
D (Display), F (Fill), M (Move), S (Set), and SR (Search). These commands use the
internal type2 segment value ff no segment value is specified in the command.

When started, DDT-86 sets the type2 segment value to 0 and changes it when one of
the following actions is taken:

• When a file is loaded by an E command, DDT-86 sets the type2 segment value
to the value of the DS register.

• When a file is read by an R command, DDT-86 sets the type2 seSment value to
the base segment where the file was read.

• When an X command changes the value of the DS register, DDT-86 changes the
type2 segment value to the new value of the DS register.

• DIGITAL R ~ A R C H m
6-16

Concuneat CIVM-86 Uulitim Guide 6.3 Default Segment Value,

• When DDT-86 regains control from a user program after a G, T, or U command,
it sets the type2 segment value m the value of the DS register.

• When a segment value is specified explicitly in a B, D, F, M, S, or SR com-
mand, DDT-86 sets the type2 segment value to the segment value specified.

When evaluating programs that use identical values in the CoS and DS registers, all
DDT-86 commands default to the same segment value unless explicitly overridden.

Note that the G (Go) command does not fall into either group because it defaults to
the CS register.

Table 6-3 summarizes DDT-86's default segment values.

Table 6-3. DDT-86 Default Segment Values

Commandltype-1 j type-2

A x

B x

D x
E c c
F x
G c c

H
I

L x
M x
R c c

S x
SR x
T c c

U c c

V
W x
X ¢ c

x - Use this segment default if none specified; change default if
specified explicitly.

c - Change this segment default.

m DIGITAL RESEARCH TM

6-17

6.4 Syntax ~ t CP/M-86 Udl/fim Guide

6.4 Assembly Language Syntax for A and L C o m m a n d s

The syntax of the assembly language statements used in the A and L commands is
standard 8086 assembly language. Several minor exceptions are listed below.

• DDT-86 assumes that all numeric values entered are hexadecimal.

• Up to three prefixes (LOCK, repeat, segment override) can appear in one state-
ment, but they all must precede the opcode of the statement. Alternately, a prefix
can be entered on a line by itself.

• The distinction between byte and word string instructions is made as follows:

byte word

• The

LODSB LODSW
STOSB STOSW
SCASB SCASW
MOVSB MOVSW
CMFSB CMFSW

mnemonics for near and far control transfer instructions are as follows:

• on normal h r

JMPS JMP JMPF
CALL CALLF
PET PETF

• If the operand of a CALLF or JMPF instruction is a 20-bit absolute address, it
is entered in the form:

S S S S : O 0 0 0

where ssss is the segment and oooo is the offset of the address.

Operands that could refer either to a byte or word are ambiguous and must be
preceded by either the prefix BYTE or WORD. These prefixes can be abbreviated
BY and WO. For example,

INC BYTE CBP]
NDT WDRD [1 2 3 4 3

Failure to supply a prefix when needed results in an error message.

6-18
• DIGITAL KI~ARCI ' I ~

Concurrent CP/M-86 Utiliti~ Guide 6.4 Syntax

• Operands that address memory directly are enclosed in square brackets to
distinguish them from immediate values. For example,

ADD AX ,5
ADD AX~[5]

;add 5 to r e l i e v e r AX
;add ~he oon~ents of l oca t i on 5 ~e A×

• The ~orms of r~gister indirect memory operands are

[pointer register]
[index register]
[pointer register + index register]

where the pointer registers are BX and BP, and the index registers are SI and DI.
Any of these forms can be preceded by a numeric offset. For example,

ADD BX ,[BP+SI]
ADD B×,3[BP+SI]
ADD B× ,1D47[BP+SI]

6.5 D D T - 8 6 Sample Session

In the following sample session, you interactively debug a simple sort program.
Comments explain the steps involved.

m DIGITAL RESEARCH ~
6-19

6.$ DDT-88 Sample Smsiou

Source file of program to test.
R)SyPa s o ~ t , a B 6

i

i

I

lOPll

S l m P I | SOrt PrOgraM

moo s i J O
moo b x , o f f l e t n l i s t
mou st#JO

O O M P I
moo a l , [b x + s 1 2
omP a l t l [b x + o i]
Jnm i n o i
xoh¢ a l ~ i [b x + o i]
moo [b x + s t 2 , e l
Moo III¢, I

t n o i n
i no s i
omP eÁ loOun t
Jnz OOMP
IESt IWII

Jhz l O P t

d o n e l
J IP done

dseq
o r l lOOh

I
n l i s t
o o u n t

it#

db
gqu

db
ond

3 , B , 4 , 8 + 3 1 , 6 , 4 , 1
o f f s l $ $ - o f f s e t
n l i s $
0

Coocmmt (~/M-$6 UdBdm G-;~

; i n i t l a l ; z o i n d e x
l bx : b a s e o f l i e s
i o l e a r s t # i t o h f l a ~

| J e t b y t e f r o m l i s t
| c o m p a r e v i t h n e x t b y t e
g d o n ' t s w i t o h I f In o r d e r
I do f i r s t P a r t o f l t # l t o h
|do eeoond P a r t
|SEe s u i t o h f | S ~

l i n c r e M e n t i n d l x
Send of l i s t v
| n o t keep t o i n J
; d o n e - any swx¢ohes?
1YeS ~ | O P t some MOPE

| J e t he re uhen l i s t o r d e r e d

; l e a v e s p a o e f o r base ~a~E

Assemble program.
A > E I m S B s o r t

CP/M BOBB ASSEMBLER VER 1.1
END OF PRBB 1
END OF PASS 2
END OF RSSEHBLY. NUHBER OF ERRORS;

U DIGITAL RESEARCI-P
6-20

Concurrent CP/M-86 Utilities Guide 6.5 DDT-86 Sample Session

Type listing file generated by ASM-86.
~ > t r P e s o r t , l e t
CP/HASMBE 1.1 SOURCE: 8 a r t . ABE PAGE t

I

I

i

s o r t :
0000 BEO000 MOV
0003 BBO001 Mov

0006 CB08080100 MOV

COMP:
O00B 8AO0 Mou
O00D 3A4001 OMP
0010 7BOA Jna
0012 8B4001 x o h l
0015 8800 may
0017 CBOBOB0101 may

in eL:
001C 48 1no
O01D 83FE08 amp
0020 75E9 Jnz
0022 FBOGOBOIOI t e s t
0027 75D7 Jnz

done:
0029 EgFDFF

s i m p l e s o r t p ro i r aea

s l t O ; i n i t i a l i z e i n d e x
b x t o f f s e t t b x = bmse of l i m t
n l L s t

sutO ; o l e m e swL toh f lmS

a l t C b x + m t]
a l t l E b x + s i]
One1
ml , l C b x + s l]
[b x + s i] , a l
s w t l

St
• i eoount
UOMP
SW t l
s o ? t

; s e t b y t e foam l t s t
IooMpar@ vL th n e x t b y t e
] d o n ' t s u i t o h i f i n o r d e r
Ida f i r s t c a r t ef s u t t o h
ldo seoond par t
l e s t s w i t c h f l a ~

; i n o r m . e n t i n d e x
;end o f i ~ s t 9
| n o t Keep J o i n s

I d a h o - m n y s v / t a h e s ?
|YESt S o r t some More

JMP done

dsef

o r s lOOh

i S e t h e r e when l i s t o r d e r e d

ilmmue sPmoE f o r bmse Pa le

II DIGIT,~L R~F.ARCH TM

6-21

6.5 DDT-86 Sample Seaion Coacurrmt CP/M-86 Ufilide= Guide

0100 030804061F08 n l x s t
0401

O00B oount
0108 O0 sw

END OF ASSEMBLY, NUMBER DF ERRORS:

db

fqu
clb
end
0

3 , 8 , 4 , 9 , 3 1 , 6 , 4 , 1

o f f s e ~ $ - o f f s m t n11mt
0

Type symbol table file generated by ASM-86.
A~tyPO I O ~ t . Sym
0000 VARIABLES
OIOONLIST 0108 SN

0000 NUMBER9
O00B COUNT

0o00 LABELS
O00B CBMP 0029 DONE 001C INCI 0000 SORT

Type hex ~e generated by ASM-86.
A)tYPe s o r t , h 8 8
:0400000300000000F8
I10000081BEOOOOBBOOO1CEOEOBOlOOBAO03A40017EOABS40018BOOCEOEOS018C
:11001081014683FEOB75EEFBOEOBOlO175D7ESFDFFEE
:08010082030004061F0604010035
|O0000001FF

Generate CMD file from .H86 file;
A)denomd t o r t

BYTES READ 0039
RECORDS MRITTEN 04

Invoke DDT-86 and load SOKT.CMD.
A>ddt#8 J o t s
DDTB6 1 ,0

START END
CB 047010000 04701002F
DE 04BOlO000 04BO:010F

• DIGITAL IU~SF~R(~.~
6-22

Concurrtut CP/M-86 Udlides Guide 6.5 DDT-86 Sample Session

Display inidal register values.
-x

AX BX CX DX 9P BP 9 I DI CS DS 85 E9 I P
. 0000 0000 0000 0000 119E 0000 0000 0000 047D 0480 0491 0480 0000
HOU 5 1 , 0 0 0 0

Disassemble the beginning of the code segment.
- I
047D,0000 HOU SI ,0000
0 4 7 D z 0 0 0 3 HQU BX~0100
047DmOOOE HOV BYTE [O t O S] t O C
047DmO00B HOU A L , E B X + S I]
047DmO00D CHP R L t O I E B X + S I]
047Ds0010 JBE O01C
047Dm0012 XCHG R L t O l [B X + g I]
047Dm0015 HOU [B X + S I] w A L
047D10017 HOU BYTE [0 1 0 B i t 0 1
0 4 7 D : 0 0 1 C INC S !
0 4 7 0 s 0 0 1 D CHP B I t O 0 0 B
0 4 7 0 s 0 0 2 0 JNZ O00B

Display the start of the data segment.
-d1OO~10f
0 4 8 0 1 0 1 0 0 03 08 04 08 I F O B 04 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 , . , , . . , . . , . , , , ,

II DIGITAL RESEARCI-P"
6"23

6.5 DDT-~ Smttl~¢ Coacnrzmt CP/M46 Utilltia Guide

Disassemble the rest of the code.
- I
0470t0022 TEST BYTE [0108],01
0470:0027 JNZ 0000
047D:002S JMP 0028
0470:002C ADO [BX+SI],AL
047D|002E ADD [BX+SI],AL
047Dt0030 DAB
0470:0031 ADD [BX+SI],AL
0 4 7 0 t 0 0 3 3 99: 6C
0 4 7 D : 0 0 3 4 POP ES
0 4 7 D , 0 0 3 5 ADD [B X] , C L
0470t0037 AD [BX+SI]~AX
047Dt003S ??= SF

Execute program from IP (= 0) setting breakpoint at 29H
- 1 , 2 8
* 0 4 7 D : 0 0 2 S B l ~ l k l) o ; n t (m ~ o u r l t c r ~ l .

Display ~ t l.t.
-d lOO,OOf
0 4 8 0 : 0 1 0 0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 . . , , , , . , , . . ,

Doesn't look good; reload file
#l@~g

flTART END
~ S 0 4 7 D I O 0 0 0 047DtOO2F
D8 0 4 8 0 1 0 0 0 0 0 4 S O l 0 1 0 F

Trace 3 imtructiom.
- t 3

AX BX EX DX SP BP SI 01 IP
. Z-P- 0000 0100 0000 0000 11BE 0000 O00S 0000 0000 MSV
. Z-PI 0000 0100 0000 0000 11BE 0000 0000 0000 0003 MDU
. Z-P- 0000 0100 0000 0000 11BE 0000 0000 0000 O00S MOU
*047DtOOOB

SI ,0000
BX JOIO0
BYTE SOlOS] tO0

i DIG~AL RESEARCH TM

6-24

~ t CP/M-86 Ut;l;d~ Guide 6.5 DDT-86 Sample Seuion

Trace somemoR.
- t 3

Ax 0x cx DX SP DP Sl DI IP
. Z-P- 0000 0100 0000 0000 11BE 0000 0000 0000 000~ MOU
. Z-P- 0003 0100 0000 0000 11BE 0000 0000 0000 O00D CHP
. . . . S-R-C 0003 0100 0000 0000 119E 0000 0000 0000 0010 JBE
.0470:001C

A L , [D X + S I]
A L , O I [D X + S I]
001C

D~play unso~ed l~t
-d1OOslOf
0 4 8 0 : 0 1 0 0 03 OE 04 OE 1F OS 04 01 O0 O0 O0 O0 O0 O0 O0 O0 , * , . .

D b p h y next inm'ucdons to be executed.
- I
047D:001C INC BI
047010010 CHP 51J000B
0 4 7 D : 0 0 2 0 JNZ O00B
0470:0022 TEST BYTE [0108],01
047D:0027 JNZ 0000
0470:0029 JHP 002S
047D:002C RDO [DX+SI],AL
047D:002E ADD [BX+SI]tRL
0470:0030 DAS
0470:0031 ADD [BX+SI],RL
047D:0033 ??= SC
0 4 7 D : 0 0 3 4 POP ES

Trace somemore
- t 3

AX DX CX DX SP DP S I DI IP
. . . . S-A-C 0003 0100 0000 0000 11SE 0000 0000 0000 001C INC
. C 0003 0100 0000 0000 11BE 0000 0001 0000 0010 CMP
. . . . S-APC 0003 0100 0000 0000 11BE 0000 0001 0000 0020 JNZ
* 0 4 7 D = 0 0 0 B

SI
SI tOOOB
O00B

i DIGITAL RESEARCH"

6.5 DDT-86 Sample Seaion ~ t (~/M-86 Udliths Guide

D~play ins~ctiom from current IP.
-J
0470#000B MOU ALP tBR+B I3
0 4 7 0 : 0 0 0 D CHP A L P O I [B X + B I]
0 4 7 0 z 0 0 1 0 JBE 001C
0 4 7 0 t 0 0 1 2 XCHG A L P O I E B X + B I]
0 4 7 0 t 0 0 1 5 HDU [B X + B I] t A L
047DtOO17HOU BYTE [0 1 0 E] ~ 0 1
04701001C INC BI
0470m001D CMP 8 I , 0 0 0 3
0 4 7 0 t 0 0 2 0 JNZ O00B
0 4 7 D I O 0 2 2 T E B T BYTE [0 1 0 8] ~ 0 1
0 4 7 0 n 0 0 2 7 JNZ 0000
0470tOO2g JHP O02B

- t 3
AX BX CX DX BP BP 8 I 0 I IP

. . . . B - R P C 0 0 0 3 0 1 0 0 0 0 0 0 0 0 0 0 1 1 8 E 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 B H O U
. . . . B-APC O00B 0100 0000 0000 | l E E 0 0 0 0 0001 0000 O00D CHP
. O00B 0100 0000 0000 I1BE 0 0 0 0 0001 0000 0010 JBE
tOa7DmO012

AL * [B X + B I 3
AL tO1 [B X + B I]
001C

0 4 7 0 t O O I Z XCHG A L , O I C B X c B I]
047Dn0015 ROU [B X + B I a ~ A L
0 4 7 0 1 0 0 1 7 HOU BYTE [0 1 0 8 ~ J 0 1
04701001C INC BI
0070n001D CHP BI,OOOB
0 0 7 0 # 0 0 2 0 JNZ O00B
0470m0022 TESTBYTE [O I O B] J O t
0 4 7 0 t 0 0 2 7 JNZ 0000
0 4 7 0 t 0 0 2 ~ JHP O02B
0 4 7 0 t 0 0 2 C ADD [B X + B I] , A L
0470tOOZE ADD [B X + E I 3 ~ A L
0 4 7 0 1 0 0 3 0 DAd

Go undl switch
- I s 2 0

~047Dt0020

has been performed.

D~play l~t.
-d1OOt IO f

0 4 8 0 t 0 1 0 0 03 04 OB OE 1F OB 04 01 01 O0 O0 O0 O0 O0 O0 O0

• mon'~ R.m~.RCH-
6-26

Goncurrem CP/M-86 Udlides Guide 6.5 DDT-86 Sample Sesdon

Looks like 4 and 8 were switched okay. (And toggle is true.)
- t

AX BX CX DX SP BP SI DI IP
. . . . 8-APC 0004 0100 0000 0000 119E 0000 0002 0000 0020 JNZ O00B
~047D=OOOB

Display next instructions.
- I
047DiOOOB HOU ALtEBX+SI]
047DzOOOD CHP ALtOIEBX+BI]
047D=0010 JBE 001C
047D=0012 XCHG ALtOIEBX+SI]
047D=0015 f l O P £BX+BZJ,AL
047D=0017 HOU BYTE £010B3101
047DI001C INC 91
047D=OO1D CHP SIPOOOB
047D=0020 JNZ O00B
047D=0022 TEST BYTE £0108] ,01
047D=0027 JNZ 0000
047D=0029 JHP 0028

Since switch worked, let's reload and check boundary conditions.
- # # o ~ g

START END
CS 047D=0000 047DIOO2F
gS 0480:0000 04SO:OIOF

a DIGITAL P,F..SEARCI'I TM

6-27

6.5 DDT-86 Samtple Sestiou Coacen~t CIP/M-86 Udlitim Guide

Make it quicker by setting list length to 3. (Could elm have mind t47d = le
to patch.)

- a l 4
047DIOO1D oIP s i t 3
047OlOOZO

Diaphy unsorted list,
-d lOO
04B0a0100 03 0B 04 0B IF 0B 04 01 00 00 00 00 00 00 00 00 , . ,
04B0s0110 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 , , , ,

04B0:0120 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 90 O0 20 20 20 ,

Set breakpoint when first 3 d e m ~ u of list shoed be sorted.
- I * Z 8

~047Ds0028

See if list ~ sorted.
- d l O O e l O f
0 4 8 0 1 0 1 0 0 0 3 0 4 0 B 0 8 1FOB 04 01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 , ° . . . , . .

Interem~g, thefourthdementseen~tohavebeensortedin.
- # i o ~ 1

BTART END
CB 047DsO000 047DIOOZF
DE 04EOtO000 0480 tO lOF

Let's try again with some tracing.
- aZd

047DsOOID omF ~ i t 3
047D:0020

6-28

Coucurrmt ~ I M - ~ Utiliti~ Gui& 6.5 DDT-ga S~ml~ ~ t i o n

- tB
AX BX CX DX SP OP SI DI IP

. Z-P- 0006 0100 0000 0000 11BE 0000 0003 0000 0000 MOU

. Z-P- 0006 0100 0000 0000 119E 0000 0000 0000 0003 MOU

. Z-P- O00S 0100 0000 0000 11BE 0000 0000 0000 0006 MOU

. Z-P- 0006 0100 0000 0000 11BE 0000 0000 0000 O00B MOU

. Z-P- 0003 0100 0000 0000 11BE 0000 0000 0000 O00D CMP

. . . . S-A-C 0003 0100 0000 0000 11BE 0000 0000 0000 0010 JBE

. . . . S-A-C 0003 0100 0000 0000 1tOE 0000 0000 0000 0010- INC

. C 0003 0100 0000 0000 110E 0000 0001 0000 0010 CMP

. . . . 8-A-C 0003 0100 0000 0000 119E 0000 0001 0000 0020 JNZ
*0470:000B

SI,O000
BX ,0100
SYTEEOIOB],O0
AL,[SX+SI]
AL,OIEBX+SI]
001C
S I
SI,O003
0000

-J
047D:O000MOU AL,[BX+SI]
047D1000D CMP AL,OIEBX+SI]
047D:0010 JOE 001C
0470:0012 XCHG AL,OIESX+SI]
0470:0015M00 [OX+SI]tAL
047D:0017H00 BYTE [010B],01
047D:001C IN0- SI
047D:O01DCMP SI,O003
0470:0020 JNZ 0000
047D:O022TEST OYTE [0108],01
0470:0027 JNZ 0000
0470:0029 JMP 0029

-13
AX BX CX DX SP BP Sl DI IP

. . . . S-A-C 0003 0100 0000 0000 1tOE 0000 0001 0000 O00B MOV

. . . . S-A-C 0008 0100 0000 0000 119E 0000 0001 0000 O00D CMP

. 0008 0100 0000 0000 11BE 0000 0001 0000 0010 JBE
*047D:0012

AL,[BX+SI]
AL ,01[BX+SI]
001o-

-1
0 4 7 D : 0 0 1 2 XCHG A L , O I [B X + S I]
047D=0015 HOU [B X + S I] t A L
047D=0017 MOU BYTE [O I O B] , 0 1
047D:001C INC SI
047D:O01DCMP SI,O003
047D:0020 JNZ O00B
047D:0022 TEST BYTE [0108],01

B DIGITAL RESEARCH TM

6-29

6.5 DDT-86 Sample Sumoa Concmrmt CP/M-86 Utilities Guide

- t 3
AX BX CX DX BP DP 8 I D I I P

. O00B 0100 0000 0000 11BE 0000 0001 0 0 0 0 0012 XCHG

. 0004 0100 0000 0000 11gE 0000 0001 0 0 0 0 0 0 1 5 MOP

. 0004 0100 0000 0000 11BE 0000 0001 0 0 0 0 0017 HOV
*OdTDIO01C

RL,OI[BX+SI]
~BX+BI] ,RL
m, YTE [010B] ,01

- d l O O , 1 0 f
0 4 8 0 : 0 1 0 0 0 3 0 4 OBOE 1 F O B 0 4 0 1 01 0 0 0 0 0 0 0 0 0 0 O0 O0 ° .

So hLr, so good.

AX ~X CX OX SP ~P S I 0 I I P
. 0004 0100 0000 0000 11BE 0000 0001 0000 001C INC
. 0004 0100 0000 0000 1 lEE 0000 0002 0 0 0 0 0010 CMP
. O00d 0100 0000 0000 l l S E 0000 0002 0000 0020 JNZ
* 0 4 7 0 s 0 0 0 ~

BI
S ILO003
O00B

-1
0 4 7 0 : 0 0 0 B HOV A L , [B X + B I]
Od7DlO00D CMP A L t O I [D X + B]]
OdTDzO010 JBE 001C
0 4 7 0 1 0 0 1 2 XCHG A L t O I [S X + B Z]
0 4 7 0 1 0 0 1 5 MOV [B X + S I] t A L
0 4 7 D : 0 0 1 7 MDV DYTE [0 1 0 8 3 , 0 1
Od7D:O01C ZNC S I
0 4 7 0 | 0 0 1 D CMP SZJO003
047Dz0020 JNZ 0005
0 4 7 0 | 0 0 2 2 TEST ~YTE [0 1 0 B] , 0 1
047D10027 JNZ 0000
047DzOOZB JHP 002B

- t 3
RX DX CX DX 8P UP S1 DI 1P

. . . . B-APC 0004 0100 0000 0000 11SE 0000 0002 0 0 0 0 0005 MOV

. . . . E-APC 0008 0100 0000 0000 11BE 0000 0002 0 0 0 0 O00D CHP

. O00B 0100 0000 0000 118E 0000 0002 0 0 0 0 0010 JDE
* 0 0 7 0 z 0 0 1 2

A L t E D X + S I]
AL~OLCBX+BI]
001C

I DIGITAL R~F.KRC~P
6-30

Concurrent C~/M-86 Utilities Guide 6.5 DDT-86 Sample Sadon

Sure enough, it's comparing the third and fourth elemen~ of the list.
Reload program.

- # S O ~ S

START END
CS 047D:0000 047DIOO2F
D8 04SOlOOOOO4SOIOlOF

-1
047D|OOOOMOU BIPO000
0470|0003 MOU BXtOlO0
047DmOOOS HOU DYTE [01083*00
047DzOOOB MDU A L t [B X + B I]
O47OIO00D CHP A L , O I [B X + S I]
047DiOOIO JBE 001C
047D10012 XCHG A L , O I [D X + B I]
047DI0015 HOU [B X + B I] t A L
047D|OOI7HOU BYTE [O lOS] ,01
047D1001C INC SI
0470|001D CHP S l tO008
0470:0020 JNZ O00B

Patch length.
- a i d
047D'OO1D elmP sx t7
047D:0020

Try it out.
- t tZ8
~ 0 4 7 D ' 0 0 2 8

II DIGITAL RES~RCi'I TM

6-31

6.$ DDT-86 Ssmple Seuloa Caocarrmt C1'/M-86 Utilities Guide

So= iF fizc b ~ru~d.
-d lOO*~Of
04B0:010001 03 04 04 OBOBO8 1 F O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Looh better; let's inmd] patch in disk ~e. To do this, we
must read CJvID file including header, so we use R command.

- t l @ r t . # m d

START END
2000m0000 ZOOOIOIFF

First 80h bytes contain header, so code start: at 8Oh.
- 180

2000m0080 NOV BI tO000

ZOOOmO083 NOV BX,0100

ZOOOmOOBE NOU BYTE [01083*00

2000mOOBB HOV ALtEBX+8I]

2000mOOBD CHP A L t O I [B X + 8 I]

2000m0080 JBE 008C

ZOOOmO082 XCHG ALtO1[BX+8%]

2000mOOBB MOU [B X + B I] t A L

2000m0087 MBU BYTE [010B]~01

ZO001008C INC BI

2000mOOBD CHP BItOOOB

2000mOOAO JNZ OOBB

l . . ~ paut.
-aSd

2000mOOBD om, t i t7

Write f lc back m ~ (L~gth of ~e mum~! to be unchanged
~ no ~ ~ .)

-gJ@rSo gmd

• D ~ n ' A L / C Z - ~

Concur ren t C P / M - 8 6 Udlides Guide 6.5 DDT-86 Sample Session

Reload fie.

START END

CS 0 4 7 D I 0 0 0 0 047D¢OO2F

DS 04BOgO000 04BOIOIOF

Verify that patch was installed.

047DmO000 HDV B I t O 0 0 0
047Dm0003 HOP B X t 0 1 0 0
047DiOOOB HOV BYTE [0 l O B] t O 0
047DIOOOB HOV A L , [B X = B I 3
047DIOOOD CHP R L t O I (B X = B I]
0 4 7 D I 0 0 1 0 JBE O01C
0 4 7 D I 0 0 1 2 XCHG R L , O I [B X = S I]
0 4 7 D I 0 0 1 5 ffDU [B X = B I] t A L
047Dm0017 HOU B Y T E [O I O f ~ t 0 1
0 4 7 D I 0 0 1 C INC fl!
047DzOOID CHP B I t O 0 0 7
0 4 7 D : 0 0 2 0 JNZ O00B

Run it.
- l e 2 B

Still looks good. Ship it!
- d l O O t l O f
0 4 8 0 = 0 1 0 0 01 03 04 0 4 OB 08 Og I F O0 O0 O0 O0 O0 O0 O0 0 0

- J t 2 B

* 0 4 7 D : 0 0 2 9

- d 1 O O , 1 0 F
0 4 8 0 : 0 1 0 0 03 08 04 06 IF 0B 04 01 00 00 00 00 00 00 00 00

R>

End of Secaon 6

[] DIGITAL RESEARCH"
6-33

Appendix A
Starting ASM-86

Command: A >ASM86

Syntax:

ASM86 tilespec [$ parameters]

where

filespec

parameters

Default filetype:

.A86

Parameters:

$ Td where T = type and d = device

is the 8086 assembly source file (drive and filetype are optional).

is a one-letter type followed by a one-letter device from the table below.

T a b l e A - 1 . Parameter Types and Devices

TYPES: A H P S F

DEVICES:

A - P x x x x

X x x x

Y x x x

Z x x x

I x

D d

x = valid, d = default

R DIGITAL RESEARCH"
A-1

A sumi~ ASM-SS Concurrent CP/M-86 Ut~iti~ Guide

Valid Parameters

Except for the F type, the default device is the current default drive.

Type

A
H
P
S
F

Table A-2. Parameter Types

Function

controls location of ASSEMBLER source file.
controls location of I-rEX file.
controls location of PRINT file.
controls location of SYMBOL file.
controls type ofhex output FORMAT.

Table A-3. Device Types

Name I Me~mg
A-P DrivesA-P

X console device
Y prin~r device
Z byte bucket
I Intel hex format
D Digital Research hex format

m DIGITAL R.~RARCH"
A-2

Concurrent CP/M-86 Utilitim Guide A Starting ASM-86

Table A-4. Invocation Fammpl¢~

Example J Result
ASMSG IO Assembles file IO.A86 and produces IO.H86

IO.LST and IO.SYM.

ASMSS IO,ASM $ AD SZ

ASMBS IO $ PY SX

ASMB6 I0 $ FD

ASMB8 IO $FI

Assembles file IO.ASM on device D and produces
IO.LST and IO.H86. No symbol file.

Assembles file IO.A86, produces IO.H86, routes
listing directly to printer, and outputs symbols on
c o n s o l e ,

Produces Digital Research hex format.

Produces Intel hex format.

End of Appendix A

m DIGITAL RESEARCH TM

A-3

Appendix B
Mnemonic Differences from the

Intel Assembler

The CP/M 8086 assembler uses the same instruction mnemonics as the Intel 8086
assembler except for explicitly specifying far and short jumps, calls, and returns. The
following table shows the four differences.

Table]3-1. Mnemonic Differmces

M . ~ o . i ~ = ~ o . I c P / M l in te l
Intrasegment short jump: JMPS JMP

Intersegraent jump: JMPF JMP

Intersegment return: RETF RET

Intersegrnent call: CALLF CALL

End of Appendix B

[] DIGITAL R~SEAgCH ~

B-1

Appendix C
ASM-86 Hexadecimal Output Format

ASM-86 produces machine code in either Imel or Digital Research hexadecimal
format. The Intel format is identical to the format defined by Intel for the 8086. The
Digital Research format is nearly identical to the Intel format, but Digital adds segraent
information to hexadecimal records. Output of either format can be input to the
GENCMD, but the Digital Research format automatically provides segment identifica-
tion. A segment is the smallest unit of a program that can be relocated.

Table C-1 defines the sequence and contents of bytes in a hexadecimal record. Each
hexadecimal record has one of the four formats shown in Table C-2. An example of a
hexadecimal record is shown below:

Byte number = > 0 1 2 3 4 5 6 7 8 9 n
Contents = > : 11 a a a a t t d d d c c CK LF

Table C-1. Hexadecimal Record Conteam

Byte [Contents
0

1-2
3-6
7-8
9-(n-1)
n-(n + 1)
n + 2
n + 3

Symbol
record mark
record length 11
load address a a a a
record type t t
databytes d d d
checksum cc
carriage remm CR
line-fi~d LF

i DIGITAL RE$EAKCH"

C-1

C ASM-86 Output Format ~ t CP/M-86 Utilitim Guide

Table C-2.

Type I Content
O0

01

02

03

Hexadecimal Record Formats

Data record

End-of-file

Extended address
mark

Start addr-'~,s

Forn~t

: II aaaa DT <dam...> cc

: 00 000001FF

: 02 0000 ST sum cc

: 04 0000 03 smiii icc

11
cc

aaaa

s~

DT
ST

= > record length- number of data byms
= > checksum- sum of all record bytes
= > 16-bi t address
= > 16-bit segment value
= > of~tet value of start addreu
= > data record type
= > segment address record type

It is in the deEnition of record type (DT and ST) that Digital Research hexadecimal
format differs from Intel. Intel defines one value each for the dam record type and the
u.'gment address type. Digital ~ c h identifies each record with the segment that
contains it, as shown in Table C-3.

• DIGITAL R ~ E A R C H ~

C-2

Concurrmt CP/M-86 Utillties Guide

Table C-3.

Intel Digital I
Symbol Value Value

DT 00

ST 02

81H

82H

83H

84H

85H

86H

87H

88H

C ASM-~ Output Format

Segment Record Types

Meaning

for data belonging to all 8086 segments

for data belonging to the CODE segment

for data belonging to the DATA segment

for data belonging to the STACK segment

for data belonging to the EXTRA segment

for all segment address records

for a CODE absolute segment address

for a DATA segment address

for a STACK segment address

for a EXTRA segment address

End of Appendix C

[] DIGITAL RESEARCH

C-3

Appendix D
Reserved Words

TableD-1. KeywordJ or Raerved Worda

Prede~d Numbers

BYTE WORD DWORD

Operators

AND LAST MOD OFFSET SHR
EQ LE NE OR TYPE
GE LENGTH NOT SEG XOR
GT LT PTR SHL

Assembler Directives

CODEMACRO EJECT IF NOLIST RS
CSEG END IFLIST ORG RW
DB ENDIF INCLUDE PAGESIZE SIMFORM
DD ENDM LIST PAGEWIDTH SSEG
DSEG ESEG NOIFLIST RB TH'LE
DW EQ

Code-macro Directives

DB DD MODRM SEGFIX RELW
DBIT DW NOSEGFIX RELB

8086 Reg/sters

AH BL CL DI ES
AL BP CS DL SI
AX BX CX DS SP
BH CH DH DX SS

Insm~c~on Mnemonics - See Appendix E.

End o[Appendix D

i DIGITAL KESEARCI'~ D-I

Appendix E
ASM-86 Instruction Summary

Table E-1. ASM-86 Instruction Summary

Mnemonic Description Set,on

AAA
AAD
KAM
KAS
ADC
ADD
AND
CALL
CALLF
CBW
CLC
CLD
CLI
CMC
CMP
CMPS
CMPSB
CMPSW
CWD
DAA
DAS
DEC
DIV
ESC
H I T
IDIV
IMUL
IN
INC
INT
INTO
IRET

ASCII adjust for Addition
ASCII adjust for Division
ASCII adjust for Multiplication
ASCII adjust for Subtraction
Add with Carry
Add
And
Call (intrasegment)
Call (intersegment)
ConvertByte to Word
Clear Carry
Clear Direction
Clear Interrupt
Complement Carry
Compare
Compare Byte or Word (of string)
Compare Byte of string
Compare Word of string
Convert Word to Double Word
Decimal Adjust for Addition
Decimal Adjust for Subtraction
Decrement
Divide
Escape
Halt
Integer Divide
Integer Multiply
Input Byte or Word
Increment
Interrupt
Interrupt on Overflow
Interrupt Return

4.3
4.3
4.3
4.3
4.3
4.3
4.3
4.5
4.5
4.3
4.6
4.6
4.6
4.6
4.3
4.4
4.4
4.4
4.3
4.3
4.3
4.3
4.3
4.6
4.6
4.3
4.3
4.2
4.3
4.5
4.5
4.5

m DIGITAL RESEARCH"

E-1

E Imtrac6m Summary Ceacarrmt CP/M-86 Utilities G~Ic

Table E-1. (continued)

Mnemonic [Description Section

JA Jump on Above 4.5
JAE Jump on Above or Equal 4.5
JB Jump on Below 4.5
JBE Jump on Below or Eqfial 4.5
JC Jump on Carry 4.5
JCXZ Jump on CX Zero 4.5
JE Jump onEqual 4.5
JG Jump on Greater 4.5
JGE Jump on Greater or Equal 4.5
JL Jump on Leu 4.5
JLE Jump on Less or Equal 4.5
JMP Jump (intrasesment) 4.5
JMPF Jump (intersegment) 4.5
JMJ'S Jump (8-bit displacement) 4.5
JNA Jump on Not Above 4.5
JNAE Jump on Not Above or Equal 4.5
JNB Jump on Not Below 4.5
JNBE Jump on Not Below or Equal 4.5
JNC Jump on Not Carry 4.5
JNE Jump onNot Equal 4.5
JNG Jump on Not Greater 4.5
JNGE Jump on Not Greater or Equal 4.5
JNL Jump on Not Less 4.5
JNLE Jump on Not Less or Equal 4.5
JNO Jump on Not Overflow 4.5
JNP Jump on Not Parity 4.5
JNS Jump on Not Sign 4.5
JNZ Jump on Not Zero 4.5
JO Jump on Overflow 4.5
JP Jump on Parity 4.5
Jl'E Jump on parity Even 4.5
JPO Jump on Parity Odd 4.5
JS Jump on Sign 4.5
JZ Jump on Zero 4.5
LAHF Load AHwith Flags 4.2
LDS Load Pointer into DS 4.2
LEA Load Effective Address 4.2
LES Load Pointer into ES 4.2

~2

Concattmt OP/M-86 Util/ti~ Guide E Imtrmtitm Smtmaty

Table E-1. (continued)

Mnemonic Description Section

LOCK
LODS
LODSB
LODSW
LOOP
LOOPE
LOOPNE
LOOPNZ
LOOPZ
MOV
MOVS
MOVSB
MOVSW
MUL
NEG
NOT
OR
OUT
POP
POPF
PUSH
PUSHF
RCL
RCR
REP
RET
RETF
ROL
ROR
SAHF
SAL
SAR
SBB
SCAS
SCASB
SCASW
SHL
SHR

Lock Bus
Load Byte or Word (of string)
Load Byte of string
LoadWord of string
Loop
Loop While Equal
Loop While Not Equal
Loop While Not Zero
Loop While Zero
Move
Move Byte or Word (of string)
Move Byte of string
MoveWordofstring
Multiply
Negate
Not
Or
Output ByteorWord
Pop
Pop Flags
Push
Push Flags
Rotate through Carry Left
Rotate through Carry Right
Repeat
Return (intrasegraent)
Return (intersegment)
Rotate Left
Rotate Right
Store AH into Flags
Shift Arithmetic Left
Shift Arithmetic Right
Subtract with Borrow
Scan Byte or Word (of string)
Scan Byte of string
Scan Word of string
Shift Left
ShiftRight

4.6
4.4
4.4
4.4
4.5
4.5
4.5
4.5
4.5
4.2
4.4
4.4
4.4
4,3
4.3
4.3
4.3
4.2
4.2
4.2
4.2
4.2
4.3
4.3
4.4
4.5
4.5
4.3
4.3
4.2
4.3
4.3
4.3
4.4
4.4
4.4
4.3
4.3

[] DIGITAL RESEARCH"
E-3

E ~ o , Samma~ Cotmmmt C]P/M-$6 Udlitiu C _ ~

Mnemonic

STC
STD
STI
STOS
STOSB
STOSW
SUB
TEST
WAIT
XCHG
XLAT
XOR

Table E-1. (continued)

Des~pg/on

Set Carry
Set Direction
Set Intearrupt
Store Byte or Word (of string)
Store Byte of string
Store Word of string
Subtract
Test
Wait
Exchange
Translate
Exclusive Or

Seegion

4.6
4.6
4.6
4.4
4.4
4.4
4.3
4.3
4.6
4.2
4.2
4.3

End of App~dix E

E~

Appendix F
Sample Program APPF.A86

~P/H AEHBE 1,09 BOURCEI APPF,ABB T a r a L n a l InpuS/Ou~eut PAGE 1

0000 EEOBO0
0003 EELS00
O00E EB2DOO

s t t l e ' T e r m i n a l I n p u s / O u t p u t '
pucaize 50
PmsevLdsh 79
|llfora
!

!

! The f Q l l o v i n ~ subrouSLnec
! mrs Lnoludmd:
!

; CONSTAT conso le s t a t u s
! CONIN conso le lnpuS
! CONOUT conso le ouspus
!
|

!
!

| • JuNP t a b l e : t

l

CSEG I s i a r S o f Gods se~men$
!

JMp_Sabl
Jaw constm$
JMP 0 0 ~
JMP OOflOUS

T e r s L n a l Z/Q sub rau tLnss ~ e ~ t ~ e

Each r o u t i n e r e q u i r e s CDNBULE NUHDER
in she BL r s S J s s e r ,

!
!

! t 1 / 0 p o r t numbers
| t ~ t t t t t ~ t f ~ t t t t f ~ t t t ~

Listin8 F-1. Sample Program APPF.A86

mDIGITAL RESEARCH"

F-1

F ~m~k ProlFm

CP/N ABMBB 1.08 SOURCE: APPF.ABB

Concurrmt CP/M-86 Udlid~ Gull©

Tmrsina3 I npu t /Ou tpu t PAGE 2

!

I T e t a i n a l Is
!

0010 i ~ s t s t t equ 1Oh ! i npu t s t i t u s p o r t
0011 i n d l t i l tqu 11h i i npu t Por t
0011 ou tda ta l equ 11h ! output po r t
0001 ~ l l d Y L ~ i i s k t IqU 01h ~ t . P ~ t Yl ldY MiS[
0002 raadyoutaasK1 aqu 02h ! output : e | dy lasR

I
| T 0) I t n i l ZI
I

O01Z t n 0 t i t ~ lqU 12h I l~PUt 0 t l t U I PO)t
0013 l n d i t a 2 iqu 13h ! t~put po~t
0013 o u t d l t i 2 equ 13h I output po r t
0004) l | d y i n l a a K 2 lqU 04h ! inPUt ?oEdy la|K
O 0 0 B roadyou tHs~2 oqu OBh I output eoadv nask

t t t t t t t t t t t
CONBTAT

Entev l BL - e l l = t l e a t n l l no
E x i t : AL - re~ = 0 t f not e l l d y

Of fh Lf ~eadv

0003 53EB3FO0 push bx ! 8 1 1 1 0 K t l r l J h l l
= 0 n l ~ l t l |

O00D 52 pu|h dx
O00E BBO0 nay dhtO I re id Status Poet
0010 BAIT nov d l , t n a t a t u s t a b [SX]
0012 EC L, a l t d x
0013 22470S and a l , e l a d y ; n a a s K t a b [bx3
0018 7402 Jz o o n s t a t o u t
0018 SOFF inu a l , 0 f f h

LbdnS 1=-1. (con~nued)

1 D ~ A L ~ E A ~ C H "

C o n c u r r c u ¢ C P / M - 8 6 Uti l i t ies G u i d e F ~.unple ~

CP/H ASHBB 1.09 80URCE: APPF.AS6 T e e s / h a l I n p u t / O u t p u t PAGE 3

u o n s t a t o u t l
OOIA 5ASOOACOC3 POp dx [POP bx [Ur e l , e l ! r u t

;
!

! * C O N I N *

!

l E n t e y l OL - t e l = t e e u t n a l no
| E x i t l AL - e|S : r e i d u h u r u u t s r
;

O01F S3EB2BO0 oon inJ push bx ! o a l l o K t s e u i n a l I
0023 ESETFF o o n i n [: s a i l o s n s t a t [! t e s t s t a t u s
002B ?4FB Jz o o n i n l
0028 52 push dx ! read o h a r u s t s e
0028 OBO0 nov dh,O
0020 8A5702 eou d l , i n d s t u t a b [OX]
002E EC in a l t d x
O02F 247F and u l , 7 f h ! s ~ r i p p a r i t y b i t
0031 5A50C3 POp dx J pep bx ! r u t

0034 53381400
0038 52
0039 50
O03A 5600
003C BA17

003E EC

@@@@@~J@@@

CUNUUT •
@~@@@t@@@@

E n t r y : OL - t e l = t u r ~ i n u | no
AL - ee l = ohaeuo tse to p r i n t

c o n a u t : p u s h bx S o a l l o K t e r m l n a l
p u s h dx
push ax
sou dh,O
uou d l , i f l e t m t u m t a b [OX]

o o n o u t l l
zn u | . d x

| t e s t S t a t U S

List,S F-1. (continual)

I I DIGITAL RESEARCZ-~
F-3

F Sample Prosmm Concurrcat CP/M-86 Uuliti~ Guide

CPIN ABHU6 t . 08 BOURCEi APPF.ABB T| tm[nml Input lOu~put PAGE 4

O03F 224709 tnd a l~ readyouteasXtab ~OX]
0042 74FA Jz oonout l
0044 58 pop ux ! v r L t e by te
0045 8A5704 Iov d l ~ o u t d l t a t a b COX]
0048 EE ou t dx~al
004B 5A50C3 POP dx I POP bx I tmt

+ + ÷ + + ÷ ÷ ÷ ÷ ÷ + ÷ + ÷

+ OKTERHINAL +
+++÷++÷+++++++

En t r y : eL - t e l = t e r n i n a l no

o K t | r a i n i l l
004C 0~05 e t b l t b l
O04E 740A Jz e r r o r
0050 80F~03 o~p b l t l e n ~ t h / n s t a t u s t a b + !
0053 7305 ~ e e~ro r
0055 FEC5 dig bl
0057 a700 nov bh,O
0058 C3 t~ t

O05A 5055C3
i
I I r P O P |

l
pep bx I pop bx I t e t ! do n o t h i n J

| t t t t t t t ~ t t t t t t led Of bode |mJ le f l t t t l t t t t t t t t ~ t ~ t
!

| t O i t a l l l i l n t t

|

dse l

Oata f o r each t l r a t n a l

Lb~SF-1. (~ n ~ u ~)

• DJGITAL PJL~,~C~P"
F-4

C m c u n ~ t C]P/M-8~ Udl ld~ G-;de F Sample ProsrJun

CP/N ABHBB 1,0D 80URCEs APPF.AOO Terulnal InputlOutpu~ PAGE 5

0000 1012
0002 1113
0004 1113
0008 0104
O00B O20B

/ n a t i t u s t a b db /ns t i t l ~ /hu~s~2
i n d i t i ~ i b db i n d a t u l t i n d a t i 2
au~da~atab db ou~da~a1,outdata2
)etdylnuasKtab db remdyinuasKl~rendvLneuK2
reudyou~im|Ktmb db rmadyou~uu|K1Pr|udyoutuaik2
!
I ~ t t t ~ t ~ H end Of f i l l ~ e f ~ t e t t t ~ H ~
Ind

END OF ABBEHDLYt NUHBER OF ERRORRs 0

Lbdn s F-1. (continued)

End of A0p~d~x F

! DIGITAL RES~ARCI'I ~
1"5

Appendix G
Code-macro Definition Syntax

<codemacro> : : - - CODF_~ZACRO < n a m e > [<formal$11et>]
<listofmacro$ciirectives>]
ENDM

< n a m e > :: = IDE~FI~_ER

<fonnal$1ist> ::-- <paramet~rSdescr>[{,<parameterSdescr>}]

<parameter$descr> :: = <form$name>:<spedfier$1et~er>
<modifier$lett~r> [(<range>)]

<.ped~erSl~er> ::= A I C I DI E I M I R I S I X

<mociifier$le~er> :: = b] w I d l sb

Grange> :: = <single$range>l<ciouble$range>

<sin#e$range> ::-- REGISTER l N'UMBERB

<cioubleSrar~e> :: = NUMBERB,HUMBERB]NUMBERB,REGISTER[
REGISTER~NUMBERB l REGISTER, REGISTER

<listofmacro$dircctives> :: = <macroSdircc6ve>
{<macro$directive>}

<macro$dircctive> :: = < d b >] < d w > l < d d > [<~gfix>]
< n o ~ # x >] <modrm> I <rdb>
I <re lw> I <db i t>

m DIGITAL RESEARCI'I ~

G-!

G Code-macro Syntax ~ t CP/M-86 Ufilitia Cmide

<db> :: = DB NUMBERB] DB < f o r m $ n a m e >

<dw> :: = DW NUMBERW I D W < f o r m $ n a m e >

<dd> :: = DD < f o r m $ n a m e >

< s e s ~ x > :: = SEGFIX < f o r m $ n a m e >

<nosegf ix> :: = NOSEGFIX < f o r m $ n a m e >

< m o d r m > :: = M O D K M NUMBE R7 ,< fo rm$ n ame > I
M O D R M < f o r m S n a m e > , < f o r m $ n a m e >

< r e l b > :: = RELB < f o r m $ n a m e >

<relw> :: = RELW < f o r m $ n a m e >

< d b i t > : : = DB1T <field$deu:r>{,<fieldSdescr>}

<fieldSdescr> : : - - NUMBER15 (NUMBERB)]
NUMBER15 (< f o r m S n a m e > (NUMBERB))

< f o r m $ n a m e > :: = IDENTIFIER

NUMBERB is 8 bits
NUM B ER W is 16 bits
NUMBER7 are ~ e values 0, 1 , . . , 7
NUMBER15 are r~e values O, 1 , . . , 15

End of App~d~ G

I DIGITAL RIP,ARCH TM

G-2

Appendix H
ASM-86 Error Messages

ASM-86 produces two types of error messages: fatal errors and diagnostics. Fatal
errors occur when ASM-86 is unable to continue assembling. Diagnostics messages
report problems with the syntax and semantics of the program being assembled. The
following messages indicate fatal errors ASM-86 encounters during assembly:

NO F I L E
DISKETTE FULL
DIRECTORY FULL
DISKETTE READ ERROR
CANNOT CLOSE
SYM50L TASLE OVERFLOW
PARAMETER ERROR

ASM-86 reports semantic and syntax errors by placing a numbered ASCII message in
front of the erroneous source line. If there is more than one error in the line, only the
first one is reported. Table H-1 summarizes ASM-86 diagnostic error messages.

Table H-1. ASM-86 Diagnostic Error Messages

Number I Meaning
ILLEGAL FIRST 1TEM

MISSING PSEUDO INSTRUCTION

ILLEGAL PSEUDO INSTRUCTION

DOUBLE DEFINED VARIABLE

DOUBLE DEFINED LABEL

UNDEFINED INSTRUCTION

GARBAGE AT END OF LINE- IGNORED

OFERANDS MISMATCH INSTRUCTION

ILLEGAL INSTRUCTION OPERANDS

M DIGITAL RESEARCH ~

H-1

H ASM-86 Error Mcmagm Concurrmt C~/M-86 Ufili~ia Guide

TIbl© H-1. (continued)

N ~ z / ~ r { Me~m/ng

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

MISSING INSTRUCTION

UNDEFINED ~ OF EXPRF~ION

IIJ~F.GAL PSEUDO OPERAND

NESTED IF ILLEGAL - IF IGNORED

IH FGAL IF OPERAND - IF IGNORED

NO MATCHING IF FOR ENDIF

SYMBOl; TLL~GALLY FORWARD REFERENCED -

NEGLECTED

DOUBLE DEFINED SYMBOL - TREATED AS
UNDEFINED

INSTRUCTION NOT IN CODE SEGMENT

NAME SYNTAX ERROR

NESTED INCLUDE NOT ALLOWED

II2~GAL EXPRF~ION ELEMENT

MISSING TYPE INFORMATION IN OPERAND(S)

LABEL OUT OF RANGE

MISSING SEGMENT INFORMATION IN
OPERAND

ERROR IN CODEMACRO BUILDING

End of Appendix H

i DIGITAL RF..SI~RCH"
H-2

Appendix I
DDT-86 Error Messages

Table F1.

Error Message

DDT-86 Error Mesmges

AMBIGUOUS OPERAND

CANNOTCLOSE

DISK READ ERROR

DISK WRITE ERROR

INSUFFICIENT MEMORY

MEMORY REOUEST DENIED

Meaning

An attempt was made to assemble a command
with an ambiguous operand. Precede the operand
with the prefix BYTE or WORD.

The disk file written by a W command cannot be
dosed. This is a h ta l error that terminates
DDT-86 execution. Take appropriate action after
checking m see if the correct disk is in the drive
and that the disk is not wr/te-pro~ted.

The disk file specified in an R command could nor
be read properly. This is usually the result of an
unexpected end-of-file. Correct the problem by
regenerating the H86 file.

A disk write operation could not be successfully
performed during a W command, probably due
to a full disk. Erase files or obtain a disk with
greater capacity.

There is not enough memory to load the file
specified in an R or E command.

A request for memory during an R command
could not be fulfilled. Up to eight blocks of
memory can be allocated at a given time.

m D I G I T A L RESEARCI-I ~ - - - -

I-I

I DDT..86En'orMe~m~ Concurrmt CPIM-86 Utaitim Gvide

Table I-I. (c o n ~ u M)

Error Message]

NO F I L E

NO SPACE

VERIFY ERROR AT s : o

Meaning

The file specitled in an R or E command could not
be found on the disk.

There is no space in the directory for the file being
written by a W command.

The value placed in memory by a Fill, Set, Move,
or Assemble command could not be read back
correctly, indicating bad RAM or attempting to
write to ROM or nonexistent memory at the
indicated location.

End of App~li~ I

• DIGITAl. R.RSILt, RCI'I ~
I-2

Index

"at" sign, 2-2
20-Bit Address

specification of in DDT-86, 6-3
8086 Registers, D-1

A

A (Assemble) Command (DDT-86),
6-4, 6-16, 6-18

AAA, 4-6
AAD, 4-6
AAM, 4-6
AAS, 4-6
ADC, 4-6
ADD, 4-6
address conventions in ASM-86, 3-1
address expression, 2-16
allocating storage, 3-8
alphanumerics, 2-1
AND, 4-8
apostrophe, 2-2
arithmetic instructions, 4-5
arithmetic operators, 2-8, 2-10
ASCII character set, 2-1
ASM-86 character set, 2-1
ASM-86 error messages, 1-3, H-1
ASM-86 filetypes, 1-2
ASM-86 instruction set, 4-1, E-1
ASM-86 operators, 2-8
ASM-86 output files, 1-1
assembler directives, D-1
assembler operation, 1-1
assembly language source file, 1-1
assembly language statements, 2-16
assembly language syntax, 6-18
asterisk, 2-2

B

B (Block Compare) Command
(DDT-86), 6-4

BDOS interrupt instruction, 6-13
binary constant., 2-3
bracketed expressions, 2-16
BYTE, 2-5, 2-7, 6-18

C

CALL, 4-13
carriage return, 2-2
C B W , 4-6
character string, 2-3
CLC, 4-16
CLD, 4-16
CLI, 4-16
CMC, 4-16
CMP, 4-6
CMPS, 4-10
Code Segment, 2-7, 3-2, 6-16
code-macro directives, 5-1, 5-2,

5-5, D-1
CodeMacro directive, 5-2
colon, 2-2
conditional assembly, 3-4
console output, 1-4
constants, 2-3
control transfer instructions, 4-13
creation of output files, 1-3
CSEG directive, 3-2
CWD, 4-6

m DIGITAL RESEARCH ~
Index-1

D

D (Display) Command (DDT-86),
6-5, 6-17

DAA, 4-6
DAS, 4-6
dam allocation directives

(ASM-86), 3-2
data iegment, 2-7, 3-1, 3-2, 6-16
dam transfer imtructiom, 4-3
DB directive (ASM-86), 2-7, 3-8
DB directive (code-macro), 5-8
DBIT directive, 5-8
DD directive (ASM-86), 2-7, 3-8
DD directive (code-macro), 5-8
DDT-86 command summary, 6-2
DDT-86 error messages, I-1
DDT-86 operation, 6-1, 6-3
DDT-86

termination of, 6-3
DEC, 4-7
default K'gment values, 6-16, 6-17
delimiteri, 2-1
device name, 1-4
device types (ASM-86), A-2
DI repter, 4-10
diasnostic error menages, H-1
Disital ReNarch hex format, 1-2, C-1
directive smmment, 2-18, 3-1
dire~ves (ASM-86), 2-16
DIV, 4-7
doll~-sisn character $, I-4, 2-2
dollar-lisn operator, 2-14
DSEG Directive (ASM-86), 3-2
DW Directive (ASM-86), 2-7, 3-7
DW directive (Code-Macro), 5-8
DWORD, 2-5, 2-7

E

E (Load for Execution) Command
(DDT-86), 6-6, 6-16

effective address, 3-1
EJECT directive, 3-10
END directive, 3-5
end-of-line, 2-16
ENDIF directive, 3-4
Ending ASM-86, 1-5
EndM directive, 5-2
EQ, 2-9
EQU directive (ASM-S6), 2-7, 3-5
error condition, 1-3
ESC, 4-16
ESEG Directive (ASM-86), 3-3
exclamation point, 2-2
expressions, 2-16
extra ~gment (ES), 2-7, 3-1,

3-3, 4-10

F

F (Fill) Command (DDT-86),
6-6, 6-17

F parameter, 1-5
fatal error, H-1
file name extensions, 1-2
flag bits, 4-2, 4-5
Hag Name Abbreviations, 6-15

resi .~, 4-2
formal parametem, 5-1

G

G (Go) Command (DDT-86),
6-7, 6-17

GT, 2-9

ms DIGITAL ItY~SEARCH='
Index-2

H

H (Hexadecimal Math) Command
(DDT-86), 6-8

hexadecimal format, 1-1
HLT, 4-16

I

I (Input Command Tail) Command
(DDT-S6), 6-8

identifiers, 2-4
IDIV, 4-7
IF Directive, (ASM-86), 3-4
IFLIST, 3-11
IMtrL, 4.7
IN, 4.3
INC, 4-7
INCLUDE Directive, (ASM-86), 3-5
initialized storage, 3-6
instruction statement, 2-16, 2-17, 3-2
INT, 4-13
Intel hex format, 1-5
INTO, 4-13
invalid parameter, 1-3
invocation examples (ASM-86), A-3
invoking ASM-86, 1-2
IRET, 4-13

J

JA, 4-13
JB, 4.13
JCXZ, 4-14
JE, 4-14
JG, 4-14
JL, 4-14
JLE, 4-14
JMP, 4-14

JN.g, 4-14
J/fiB, 4.14
JNE, 4.15
JNG, 4-15
j l ~ 4-1s
JNO, 4.15
JNP, 4.15
JNS, 4-15
JNZ, 4-1S
JO, 4-15
JP, 4-15
JS, 4-15
jz, 4-15

K

keywor&, 2-5, 2-6, D-1

L

L (List) Command (DDT-86), 6-8,
6-16, 6-18

labels, 2-7, 2-17
LAHF, 4-3
LDS, 4-3
LE, 2-9
LEA, 4-3
LES, 4-3
line-feed, 2-2
LIST, 3-11
location counter, 3-4
LOCK, 4-17
LODS, 4-10
logical instructions, 4.5
logical operators, 2-8, 2-9
logical segments, 3-1
LOOP, 4-15
LT, 2-9

8 DIGITAL RESEARCH TM

Index-3

M

M (Move) Command (DDT-86),
6-9, 6-17

MAC, 5-1
macrm, 5-1
minus, 2-2
mnemonic, 2-17
nmemonic differences, 4-18
mnemonic differences from the Intd

auembler, B-1
mnemonics, 4-1
rood field, 5-6
modifiers, 5-4
MODRM directive (code-macro), 5-6
MOV, 4-4
MOVS, 4-11
MUL, 4-7

N

name fidd, 2-18
NEG, 4-7
NOIFLIST, 3-11
NOLIST, 3-11
nonprinfing characters, 2-1
NOT, 4-8
number symbols, 2-8
number~ 2-8
numeric constants, 2-3
numeric expressions, 2-16

O

offset, 2-7
offset value, 3-1
operands, 4-1

operator precedence, 2-14
operators, 2-8
optional run-time parameters,

1-3, 1-4
OR, 4-8
order of operations, 2-14
ORG Directive (ASM-86), 3-4
OUT, 4-4
output files, 1-1, 1-2

P

PAGESIZE directive (ASM-86), 3-10
PAGEWIDTH directive

(ASM-86), 3-10
parameter list, 1-3
parameter types (ASM-86), A-2
period, 2-2
period operator, 2-14
plus, 2-2
POP, 4-4
prede~ed numbers, 2-5
prefix, 2-17, 4-11
Prefix instructions, 2-17, 4-12
prefix mnemonics, 4-11
print~ output, 1-5
FFR operator, 2-14
PUSH, 4-4

Q

QI and QO (Query I/O) Commands
(DDT-86), 6-9

In~x- .4 m DIGITAL RF~EARCH TM

R

R (Read) Command (DDT-86),
6-10, 6-16

radix indicators, 2-3
range specifiers (code-macro), 5-4
RB directive (ASM-86), 3-9
RCL, 4-8
RCR, 4-8
register memory field, 5-6
registers, 2-5
relational operators, 2-8, 2-10
RELB directive (code-macro), 5-7
RELW directive (code-macro), 5-7
PEP, 4-12
reserved words, D-1
ROL, 4-8
ROR, 4-8
RS directive (ASM-86), 3-8
run-time options, 1-4
run-time parameters, 1.4
RW directive (ASM-86), 3-9

S

S (Set) Command (DDT-86),
6-11, 6-17

SAHF, 4-4
SAL, 4-8, 4-9
SAR, 4-9
SBB, 4-7
SCAS, 4-11
SEGFIX directive (code-macro), 5-5
segment, 2-7
segment base values, 3-1
segment &rective statement, 3-1
segment override, 2-8, 2-10, 2-13
segment record types, C-3
segment start directives 3-I

semicolon, 2-2
separators, 2-1
shift instructions, 4-5
SHL, 4-9
SHR, 4-9
SI register, 4-10
SIMFORM directive (ASM-86), 3-10
slash, 2-2
space, 2-2
special characters, 2-I
specifiers, 5-3
SR (Search) Command

(DDT-86), 6-12
SSEG Directive, 3-3
stack segment, 2-7, 3-1, 3-3
starting ASM-86, 1-2, A-1
starting DDT-86, 6-1
statements, 2-16
STC, 4-17
STD, 4-17
STI, 4-17
STOS, 4-11
string constant, 2-4
string operations, 4-10
SUB, 4-7
symbol table, 5-1
symbols, 2-4, 2-6, 3-5

T

T (Trace) Command (DDT-86),
6-12, 6-16

tabs, 2-1
TEST, 4-9
TITLE directive (ASM-86), 3-9
tokens, 2-1
type, 2-7
type2 segment value, 6-16

[] DIGITAL RESEARCH TM

Index-$

U

U (Unu'ace) Command (DDT-86),
6-13, 6-16

unary operators, 2-13
underu:ore, 2-2

V

V (Value) Command (DDT-86), 6-13
variable manipulators, 2-8, 2-10, 2-13
variables, 2-7

W

W (Write) Command (DDT-86),
6-14, 6-16

WAIT, 4-17
WORD, 2-5, 2-7, 6-18

X

X (Examine CPU State) Command
(DDT-86), 6-14, 6-16

XCHG, 4-4
XIAT, 4-4

• DIGITAL RESEARCH TM

I n d . 4

