GSX tm
Graphics Extension
Programmer’s Guide

Copyright (c) 1983

Digital Research
P.O. Box 579
160 Central Avenue
Pacific Grove, CA 93950
TWX 910 360 5001

All Rights Reserved

COPYRIGHT

Copyright (c) 1983 by Digital Research Inc. All
rights reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a
retrieval system, or trandlated into any language or
computer language in any form or by any means,
electronic, mechanical, magnetic, optical, chemical,
manual, or otherwise, without the prior written
permission of Digital Research, Post Office Box 579,
Pacific Grove, California, 93950.

Readers are granted permission to include the
example programs, either in whole or in part, in
their own programs.

DISCLAIMER

Digital Research makes no representations or
warranties with respect to the contents hereof and
specificaly disclaims any implied warranties of
merchantability or fitness for any particular
purpose. Further, Digital Research reserves the
right to revise this publication and to make changes
from time to time in the content hereof without
obligation of Digital Research to notify any person
of such revision or changes.

TRADEMARK

CP/M and CP/M-86 are registered trademarks of

Digital Research. DR Draw, DR Graph, GSX, and TEX
are trademarks of Digital Research. IBMisa
registered trademark of International Business
machines. MS-DOSisatrademark of Microsoft
Corporation.

The GSX Graphics Extension Programmer’s Guide was
prepared using the Digital Research TEX" Text
Formatter and printed in the United States of
America

khkhkkkhhkkkhhkkhhhkkhhhkhhhkhhhkhkhhkkhkhhkkhkikkikx*x

* Second Edition: September 1983 *

khkhkkkhhkkkhhkkhhhkkhhhkhhhkhhhkhkhhkkhkhhkkhkikkikx*x

Foreword

MANUAL OBJECTIVE Thisdocument describes the features and
operation of the Graphics System Extension
(GSX tm) , Release 1. 2. The manual explains what
GSX does and how you can use its graphics
capabilities. It also explains how GSX
interfaces to your hardware environment and how
you can adapt GSX for your own unigue graphics
devices.

INTENDED AUDIENCE This manual isintended for microcomputer
programmers as well as for system and
application programmers who are familiar with
operating system and graphics programming
concepts.

MANUAL DESIGN Thismanual contains f ive sections, three
appendixes, aglossary, and anindex. The
following descriptions will help you determine
areading path through the manual.

Section 1 isan introduction to GSX. It
describes the features you need to know to run
graphics application programs.

Section 2 isa programmer’ s overview of GSX.
It explains the GSX architecture and introduces
the components of GSX. It also describes how
to use GSX with application programs.

Section 3 describes the Graphics Device
Operating System (GDOS).

Section 4 describes the Graphics Input/output
System (GIOS) . It tells how to interface
particular graphics devicesto GSX to provide
device independence for your application
program.

Section 5 provides details about operating GSX
and how to integrate your application program
with the GSX facilities.

Appendixes contain the following ref erence

information:

Appendix A -

Appendix B -

Appendix C -

GSX conventions for the
CP/M(r) operating system for 8080
Mi Croprocessors

GSX conventions for the CP/M-

86k, IBM(r) PC DOS, and MS-DOS"
operating systemsfor 8086

Mi Croprocessors

The Virtual Device Interface (VDI)
specification

The glossary follows with terminology inique to
GSX. Finadly, an extensive index helps you use
this document more effectively.

Table of Contents
1 Introduction
About This Manual
GSX Benefits
GSX Functions
Transforming Points
Servicing Graphics Requests
Loading Device Drivers
2 Programmer’s Overview
Introduction
Graphics System Extension Architecture
Graphics Device Operating System (GDOS)
Graphics Tnput/Output System (GIOS)
Enabling Graphics
Graphics Mode Initialization
Application Programs
3 GDOS
Introduction
GDOS Functions
Graphics Calls
Dynamic Loading
Transforming Points
GDOS Calling Sequence
GDOS Opcodes
Loading GIOS Files

Assignment Table Format
Memory Management

1-1

1-1

1-2

2-6

3-1
3-1

3-1
3-1
3-2

3-7
3-8

Table of Contents (continued)

4 GIOS

Introduction

Purpose of GIOS

GIOS Functions

virtual Device interface Specification
Creating GIOS File

5 Operating Procedures

Introduction

GSX Distribution Files

Running Graphics Applications under GSX
Determining Memory Requirements
Debugging Graphics Applications under GSX
Writing a New Device Driver

Appendixes

A GSX Cdling Conventions for CP/M
Introduction

GSX Skeleton Device Driver

FORMAT

GDOS Calling Conventions

Vi

A-1

A-1

A-1

A-3

Appendixes (continued)

B GSX Calling Conventions for CP/M-86, IBM PC DOS,

and MS-DOS

Introduction B-1
GDOS Calling Sequence B-1
Invoking Device Drivers B-3
Error Messages B-5

C Virtual Device Interface (VDI) Specification

Introduction C1

Format C-1

Open Workstation C-4

Close Workstation C-9

Clear Workstation C-9

Update Workstation C-10
Escape C-10
ESCAPE: Inquire Addressable Character Cells C-12
ESCAPE: Enter Graphics Mode C-13
ESCAPE: Exit Graphics Mode C-13
ESCAPE: Cursor Up C-14
ESCAPE: Cursor Down C-14
ESCAPE: Cursor Right C-15
ESCAPE: Cursor Left C-15
ESCAPE: Home Cursor C-16
ESCAPE: Eraseto End of Screen C-16
ESCAPE: Eraseto End of Line C-17
ESCAPE: Direct Cursor Address C-17
ESCAPE: Output Cursor Addressable Text C-18

vii

Appendixes (continued)

ESCAPE: Reverse Video On C-19
ESCAPE: Reverse Video Off C-19
ESCAPE: Inquire Current Cursor Address C-20
ESCAPE: Inquire Tablet Status C-20
ESCAPE: Hard Copy C-21
ESCAPE: Place Graphic Cursor at Location C-21
ESCAPE: Remove Last Graphic Cursor C-22
Polyline C-23
Polymarker C-24
Text C-25
Filled Area C-26
Cell Array C-27
Generalized Drawing Primitive (GDP) C-29
Set Character Height C-33
Set Character Up Vector C-34
Set Color Representation C-35
Set Polyline Line Width C-37
Set Polyline Color Index C-37
Set Polymarker Type C-38
Set Polymarker Scale C-39
Set Polymarker Color Index C-40
Set Text Font C-41
Set Text Color Index C-42
Set Fill Interior Style C-43
Set Fill Style Index C-44

Set Fill Color Index C-45

viii

Appendixes (continued)

Inquire Color Representation

Inquire Cell Array

Input L ocator

Input Vauator

Input Choice

Input String

Set Writing Mode

Set Input Mode

Required Opcode CRT Devices

Required Opcode for Plotters and Printers
Tables and Figures

Tables
3-1. GSX Operation Codes
C-1. Sample Mode Status Returned
C-2. Opcode for CRT Devices
C-3. Opcode for Plotters and Printers
Figures
1-1. GSX Provides Device-Independent Graphics
2-1. GSX Memory Map

C-46
C-47
C-48
C-51
C-53
C-55
C-57
C-59
C-60
C-61

3-3

C-49
C-60
C-61

1-3

Section |
INTRODUCTION

ABOUT THISMMUAL

GSX BENEFITS

Section 1 identifies the features of GSX, the
Graphics System Extension for your operating
system. It explains what GSX does and how to
use its graphics functions.

Thissection isfor you if you are a new user
of GSX. It assumesthat your goa isto
quickly hook up your application programs to
your system’ s graphics capability.

If you are a system or an application
programmer familiar with operating system
concepts, this section introduces you to GSX.

Section 2 through Section 5 provides al the
details you need to use GSX with your own
unique graphics devices.

GSX adds graphics to your operating system, as
follows:

0 GSX supports DR Graph..and DR Draw., two
products that extend your graphics
capability. DR Graph alows you to graph and
plot data by making ssmple menu selections.
DR Draw lets you draw complex graphics
Images.

0 GSX opens aworld of application software.
Y ou can run any graphics application program
that uses GSX with several 8080 and 8086
microcomputer operating systems.

0 GSX promotes user portability. The interface
between you and GSX isidentical to the
interface between you and your operating
system.

GSX Programmer’s Guide

GSX FUNCTIONS

Transforming
Points

GSX Functions

0 GSX provides a device-independent software
interface for your application programs. Y ou

will not need to rewrite your programs if you
decide to use a printer instead of a plotter,

for example.

All graphics devices are not alike. Terminals,
printers, and plotters draw lines, fill in
areas, and produce text differently.

With the Graphics System Extension for your
operating system, you do not have to worry
about device differences, because GSX handles
all the differences and lets you talk to the
devices through your application program as if
the deviceswere all thesame. GSX handles
graphics requests and supplies the right
program to run the device you are using.

All computer graphics are displayed on a

coordinate system. GSX’sjob isto make sure

the coordinate system that one device uses
matches the coordinate system used by another.
For example, with GSX your application program

produces the same graphics image on your

printer that it does on your CRT. The

linetypes and character sizes are the same.

GSX Programmer’ s Guide GSX Functions

NOTE : Picture of computer intentionaly
deleted in the interest of producing
aplain ASCII file of this manual.

Figure 1-1. GSX Provides Device-1ndependent Graphics

GSX Programmer’ s Guide

Servicing
Graphics
Requests

Loading Device
Drivers

GSX Functions

Your application programs work with GSX

through a standard calling sequence. GSX

trandates these standard callsto f it the
peculiarities of each graphics device (a

printer or plotter, for example). The

tranglation process makes your application
programs device-independent. The programs can
run on your system with the graphics device you
areusing.

For details about using GSX, refer to the GSX
user’ sguide for your system.

Each graphics device is mechanically and
electricaly different, and requires a specia
program to run it. These programs are called
devicedrivers. GSX makes sure the right
driver isloaded into memory so you can use the
device you specify.

End of Section 1

Section 2
PROGRAMMER’'S OVERVIEW

INTRODU,CTION This section introduces the Graphics System
Extension architecture with its components and
their functions. Later sections describe each
of these partsin detail.

GRAPHICS SYSTEM GSX isthe Graphics System Extension for

EXTENSION microcomputer operating systems. it

ARCHITECTURE incorporates graphics capability into the
operating system and provides a host and
device-independent interface for your
application programs. Graphics primitives are
provided for implementing graphics applications
with reduced programming effort. In addition,
GSX enhances program portability by alowing an
application to run on any operating system with
the GSX option. GSX aso promotes programmer
portability by providing acommon programming
interface to graphics that is compatible with
the most widely used operating systems.

GSX isan integra part of your operating
system. Application programsinterface to GSX
through a standard calling sequence. Drivers
for specific graphics devices trandate the
standard GSX callsto the unique
characteristics of the device. In thisway,

GSX provides device independence, and the
peculiarities of the graphics device are not
visible to the application program.

GSX consists of two parts that work together to
give your system graphics capability:

0 Graphics Device Operating System (GDOS)
0 Graphics Input/Output System (GIOYS)

GSX Programmer’s Guide GSX Architecture

Graphics The Graphics Device Operating System (GDOS)
Device Operating contains the basic host and device-
System (GDOS) independent graphics functions that can be

called by your application program. GDOS
provides a standard interface to graphics that

is constant regardless of specific devices or

host hardware, just as the disk operating
systems standardize disk interfaces. Y our
application program accesses GDOS in much the
same way that it accesses the disk operating
system.

GDOS performs coordinate scaling so that your
program can specify pointsin anormalized
coordinate space. It uses device-specific

information to trand ate the normalized
coordinates into the corresponding values for
your particular graphics device.

Multiple graphics devices can be supported
under GSX within a single application. By
referring to devices with aworkstation
identification number, an application program
can send graphics information to any one of
severa disk-resident devices. GDOS
dynamically loads a specific device driver when
requested by the application program,
overlaying the previous driver. Thistechnique
minimizes memory Size requirements since only
onedriver isresident in memory at any time.
For details see "LOADING GIOS FILES' in Section 3.

Graphics The Graphics Input/Output System (GIOS) is
Input/Output similar to any 1/0 system. It contains the
System (GIOS) device-specific code required to interface your

particular graphics devicesto the GDOS. GIOS
consists of a set of device driversthat
communicate directly with the graphics devices
through the appropriate means. GSX requires a
unique devicedr iver f or each dif f erent
graphics device on your system. The term GIOS

2-2

GSX Programmer’s Guide GSX Architecture

refersto the functional layer in GSX that

holds the collection of available device

drivers. The particular driver that isloaded

into memory when required by your application
iscalled aGIOSfile. Although asingle
program can use several graphics devices, GDOS
loads only one GIOSfile at atime.

GIOS performs the graphics primitives of GSX
consistent with the inherent capabilities of

your graphics device. In some cases, adevice
driver emulates standard GDOS capabilities that
are not provided by the graphics device
hardware. For example, some devices require
that dashed lines be simulated by a series of
short vectors generated in the device driver.

The GSX package contains drivers for many of
the most popular graphics devices for
microcomputer systems. However, you can
install your own custom device driver if
necessary. We provide information in Section
4,"GIOS," to help you write your driver. The
Virtual Device Interface (VDI) Specification in
Appendix C defines all the required functions
and parameter conventions.

Enabling Graphics A special command allows you to enable and
disable graphics functions from the command
level of the operating system. This command
enables GSX by loading GDOS and the default
device driver and establishing the proper links
to the operating system to allow an application
program to access graphics devices. When GSX
isdisabled, it relinquishes all system memory
space, leaving the maximum memory for
non-graphics programs.

Y OU must initialize GSX with a graphics command
before running an application that uses GSX.

Refer to your GSX user’ s guide for the GSX
command that your system uses.

2-3

GSX Programmer’s Guide Graphics Mode Initialization

GRAPHICS MODE
INITIALIZATION

Upon entering the graphics mode, the
operating system performs several actions.
First, it brings GDOS into memory along with
the default driver, the first device driver
listed in the Assignment Table.

Next, it calls the GDOS, which intercepts GDOS
calls but passes operating system callsto the
operating system.

Finally, control returnsto the operating

system command interface module, which waits

for the next operator command. Note that a
warm start (usually invoked by CTRL-Z) does not
disturb the graphics mode initialization. 4D

However, a cold start, or hardware reboot,
disables GSX, which requires you to execute the
GSX command after you reboot the system.

Figure 2-1 shows the location of the components
of GSX after GSX graphics mode initialization.

When graphics mode is disabled, the memory used
by GDOS and the GIOS fileis made available to
user programs, and control is returned to the
operating system user interface module.

GSX Programmeris Guide Graphics Mode Initialization

NOTE : Picture of memory map intentionaly
deleted in the interest of producing
aplain ASCII file of this manual.

Figure 2-1. GSX Memory Map

GSX Programmer’s Guide

APPLICATION
PROGRAMS

Application Programs

With appropriate callsto GDOS, you can write
your application programs in assembly language
or ahigh-level language that supports the GSX
caling conventions. Y ou can compile or
assemble and link programs containing GSX calls
in the normal manner.

End of Section 2

2-6

Section 3
GDOS

INTRODUCTION This section describes the Graphics Device
Operating System (GDOS) in detail, including
GDOS functions, the GDOS calling sequence, and
how device drivers are loaded.

GDOS FUNCTIONS GDOS performs three functions during the
execution of a graphics application program:

o responds to GSX requests
0 loads device drivers as required

o converts normalized coordinates to device
coordinates

Graphics Calls An application program accesses GDOS by making
callsto the operating system. Refer to
Appendixes A and B for GSX conventions for
specific operating systems.

Dynamic Loading Each time an application program opens a
workstation, GDOS determines whether the
required device driver isresident in memory.
If not, GDOS loads the driver from disk and
services the graphics request.

3-1

GSX Programmer’ s Guide

Transforming
Points

GDOS CALLING
SEQUENCE

CDOS OPCODES

GDOS Functions

The application program passes al graphics
coordinates to GDOS as Normalized Device
Coordinates (NDC) in arange from O to 32,767
in both axes. Using information passed from
the device driver when the workstation, or
device, was opened, GDOS scales the NDC units
to the device coordinates. Thefull scale NDC
space is aways mapped to the full dimensions
of your graphics device in each axis. This
ensures that al your graphics information
appears on the display surface regardless of

the dimensions of the device.

GSX givesyou a standard way to access
graphics capabilities. This accessing method is
called the Virtual Device Interface (VDI)
because it makes al graphics devices appear
"virtually" identical.

The implementation of the VDI employs the
conventional disk operating system calling
sequence. The application program calls GDOS
by calling the operating system. For specific
operating system calls, refer to Appendixes A
and B. The program passes argumentsto GDOS in
aparameter list, which consists of five

arrays. acontrol array, an array of input
parameters, an array of input point
coordinates, an array of output parameters, and
an array of output point coordinates. The
specific graphics function to be performed by
GDOS isindicated by an operation code in the
parameter list.

Table 3-1 summarizes the GDOS opcodes. See
Appendix C for adetailed description of all
the operation codes including parameters.

GSX Programmer’s Guide GDOS Opcodes
Table 3-1. GSX Operation Codes
Opcode Description
1 OPEN WORKSTATION initializes a graphics device (load
driver if necessary).

2 CLOSE WORKSTATION stops graphics output to this
workstation.

3 CLEARWORKSTATION clears display device.

4 UPDATE WORKSTATION displays all pending graphics on
workstation.

5 ESCAPE enables special device-dependent operation.
ID -7 Definition

INQUIRE ADDRESSABLE CHARACTER CELLS returns
number of addressable rows and columns.

N

ENTER GRAPHICS MODE enters graphics mode.
3 EXIT GRAPHICS MODE exits graphics mode.

4 CURSOR UP moves cursor up one row.

5 CURSOR DOWN moves cursor down one row.

6 CURSOR RIGHT moves cursor right one column.
7 CURSOR LEFT moves cursor |eft one column.

8 HOME CURSOR moves cursor to home position.

9 ERASE TO END OF SCREEN erases from current
cursor position to end of screen.

10 ERASE TO END OF LINE erases from current
cursor position to end of line.

11 DIRECT CURSOR ADDRESS moves alpha cursor to
specified row and column.

3-3
GSX Programmer’s Guide GDOS Opcodes

Table 3-1. (continued)
Opcode Description
ID Definition

12 OUTPUT CURSOR ADDRESSABI,E TEXT outputs text
at the current alpha cursor position.

13 REVERSE VIDEO ON displays subsequent text in
reverse video.

14 REVERSE VIDEO OFF displays subsequent text
in standard video.

15 INQUIRE CURRENT CURSOR ADDRESS returns
location of alpha cursor.

16 INQUIRE TABLET STATUS returns status of
graphics tablet.

17 HARDCOPY makes hardcopy.

18 PLACE GRAPHIC CURSOR AT LOCATION moves
cursor directly to specified location.

19 REMOVE GRAPHIC CURSOR does not display
Cursor.

20-50 RESERVED (for future expansion).
51-100 UNUSED (and available).
6 POLYLINE outputsapolyline.
7 POLYMARKER outputs markers.
8 TEXT outputstext starting at specified position.
9 FILLED AREA displays and fills a polygon.

10 CELL ARRAY displaysacell array.

3-4

GSX Programmer’s Guide GDOS Opcodes

Table 3-1. (continued)

Opcode Description

11

12

13

14

15

16

17

18

19

20

21

GENERALIZED DRAWING PRIMITIVE displays a generalized
drawing primitive.

ID Definition
1 BAR
2 ARC

3 PIE SLICE
4 CIRCLE
5 PRINT GRAPHIC CHARACTERS
6-7 RESERVED (for future use)
8-10 UNUSED (and available)
SET CHARACTER HEIGHT setstext size.
SET CHARACTER UP VECTOR sets text direction.

SET COLOR REPRESENTATION defines the color associated
with acolor index.

SET POLYLINE LINETY PE setslinestyle for polylines.

SET POLYLINE LINEWIDTH sets width of lines.

SET POLYLINE COLOR INDEX sets color for polylines.
SET POLYMARKER TY PE sets marker type for polymarkers.
SET POLYMARKER SCALE sets size for polymarkers.

SET POLY MARKER COLOR INDEX sets color for
polymarkers.

SET TEXT FONT sets device-dependent text style.

GSX Programmer’s Guide GDOS Opcodes
Table 3-1. (continued)
Opcode Description
22 SET TEXT COLOR INDEX sets color of text.
23 SET FILL INTERIOR STYLE setsinterior style for
polygon fill (hollow, solid, halftone pattern,
hatch).

24 SET FILL STYLE INDEX setsfill styleindex for
polygons.

25 SET FILL COLOR INDEX sets color for polygon fill.

26 INQUIRE COLOR REPRESENTATION returns color
representation values of index.

27 INQUIRE CELL ARRAY returns definition of cell array.
28 INPUT LOCATOR returns value of locator.

29 INPUT VALUATOR returns value of valuator.

30 INPUT CHOICE returns value of choice device.

31 INPUT STRING returns character string.

32 SET WRITING MODE sets current writing mode (replace,
overstrike, complement, erase).

33 SET INPUT MODE sets input mode (request or sample).

LOADING GIOSFILES The GSX Virtua Device Interface refersto
graphics devices asworkstations. Beforea
graphics device can be used, it must first be
initialized with an OPEN WORKSTATION operation.
This operation initializes the device with
selected attributes, such as linetype and
color. It aso returns information about the
device to GDOS.

3-6

GSX Programmer’s Guide

Assignment Table
Format

Loading GIOS Files

When the OPEN WORKSTATION operation is
performed, GDOS determines whether the correct
GIOSfile, or device driver, iscurrently in

memory. It doesthis by comparing the
workstation ID specified in the OPEN
WORKSTATION call with the workstation ID of the
device whose driver iscurrently loaded. if
thereisamatch (if the correct GIOSfileis

in memory) , the OPEN WORKSTATION request is
serviced immediately.

If a match does not occur, the GDOS must |oad
the correct GIOSfile. To find it, GDOS refers
to a data structure called the Assignment

Table, which contains information about the
available device drivers and their location.

GDOS searches the Assignment Table for the
first device driver entry with adriver number
that matches the workstation 1D requested in
the OPEN WORKSTATION call. If it findsthe
correct driver entry, GDOS |loads the new GIOS
file where the previous one was located. When
the load is complete, GDOS finishes the OPEN
WORKSTATION operation and returns to the
caling program.

If thereis no match in the Assignment Table
when anew driver isrequired, GDOS returns
without loading a driver, and the previous
graphics device continues to operate as the
open workstation.

The Assignment Table consists entirely of

text and can be created or modified with any

text editor. It must residein afile named
ASSIGN.SY S on the drive specified in the GSX
graphics mode command or on the current default
driveif noneis specified in the command when
GSX isoperating. For each device driver,

there is an entry containing the driver number,

GSX Programmer’s Guide Loading GIOS Files

which specifies the workstation ID of the
associated device, and the name of thefile
containing the associated graphics device
driver. The name of the device driver file can

be any legal unambiguousfilename. Any device
used during a graphics session must have an
entry in the Assignment Table corresponding to
the name of its associated driver.

The format for entriesin the Assignment Table
isasfollows:

DDXd:filename;comments

DD =logical driver number

X = gpace

d = disk drive code

filename = driver filename (valid unambiguous
filename of up to eight characters
and filetype, SYS extension
assumed as default)

comments = any text string

For example, valid entries in the Table would
be asfollows:

21 A:PRINTR ; printer

11 A:DDPLOT ; plotter

1 B:CRTDRYV ; system console
2 E.DRIVER.ABC

14 DRIVER2.SYS

Note: Thedriver filename can have any

filetype; however, SYSisassumed if the
filetypefield isblank. The drive specified

in the GSX graphics mode command is used asthe
default for driver filenames that do not have

an explicit drive reference. Extra spaces can

be inserted.

3-8

GSX Programmer’s Guide

Memory Management

Loading GIOS Files

The following convention for assigning device
driver numbers, or workstation IDs, to graphics
devices ensures the maximum degree of device
independence within application programs. The
convention for driver numbersis asfollows:

Device Number Device Type

1-10 CRT
11-20 Plotter
21-30 Printer
31-40 Metafile
41-50 Other devices

Assign the lowest device number within adevice
type when you use only one device.

When graphics mode is enabled, GSX allocates
memory for thefirst device driver in the
Assignment Table. Thisdriver isreferred to
asthe default devicedriver. Subsequently,
GDOS causes all new driversto be loaded into
the same area where memory was allotted for the
origina devicedriver. Ensure that the first
driver in the Assignment Tableis the largest
driver to be loaded so that ample memory space
is alocated by the CSX loader for all
subsequent drivers. GSX returns an error to
the caller and the new driver is not loaded if

an attempt is made to load a driver larger than
the default driver.

End of Section 3

3-9

Section 4

GIOS

INTRODUCTION This section describes the Graphics Input/
Output System, or GIOS. With thisinformation
you can write and install your own custom
driversfor unique graphic devices.

PURPOSE OF GIOS Aswe discussed earlier, GSX is composed of

two components: the Graphics Device Operating
System (GDOS) and the Graphics Input/Output
System (GTOS). GDOS contains the device-
independent graphics functions, while GIOS
contains the device-dependent code. This
division is consistent with the philosophy of
isolating device dependencies so that the
principal parts of the operating system are
transportable to many systems. Thisalso
allows applications to run independent of the
specific devices connected to the system. In

this context, GIOS is analogous to the 1/0
systems but pertains to graphics devices only.
GIOS contains a GIOSfile, or devicedriver,

for each of the graphics devices on the system.
Each GIOS file contains code to communicate
with a single specific graphics device.

A difference between GIOS and 1/O systemsis
that whereas all device drivers contained

within 1/0O systems are resident in memory
simultaneously, only one graphics device driver
isresident at any time. That is, only one
graphics deviceis active at atime, athough

the active device can be changed by arequest
from the application program. GDOS ensures
that the correct driver isin memory when
required.

GSX Programmer’ s Guide GIOS Functions

GIOS FUNCTIONS Each of the GIOSfiles usestheintrinsic
graphics capabilities of devices to implement
graphics primitives for GDOS. In some cases,
the graphics device does not support all the
GDOS operations directly, and the driver must
emulate the capability in software. For
example, if aplotter cannot produce a dashed
line, the driver must emulate it by converting
asingle dashed line into a series of short

vectors and transmitting them to the plotter,
giving the same end result.

VIRTUAL DEVICE Devicedrivers must conform to the GSX
INTERFACE Virtual Device Interface (VDI) Specification.
SPECIFICATION The VDI specif ies the calling sequence to access

device driver functions as well as the syntax
and semantics of the data structures that
communicate across the interface.

The application program passes arguments to
device driversin a parameter list pointed to
by the contents of specific registers. The
parameter list isin the form of five arrays,
asfollows:

o control array

o array of input parameters

0 array of input point coordinates
o array of output parameters

o array of output point coordinates

The application program specifies the graphics
function to be performed by adevice driver
with an operation code in the control array.

All array elements aretype INTEGER (2 bytes).
All arrays are 1-based; that is, the double-

word address at Parameter Block (PB) pointsto
the first element of the control array

(contr 1 (1)) .The meaning of the input and
output parameter arrays is dependent on the

GSX Programrner’s Guide

Virtual Device Specification

opcode. See Appendix C, "Virtual Device
Interface Specification,” for details.

The application program passes al graphics
coordinates to the device driver as device
coordinates. Using information passed from the
device driver when the workstation, or device,
was opened, GDOS scales the NDC coordinates,
passed from the application to the coordinates

of the specific device.

The full-scale NDC space is always mapped to
the full dimensions of your graphics devicein
each axis. Thisensuresthat all your graphics
information is visible on the display surface
regardless of the actual device dimensions.

However, NDC spaceislarger than device space.
For example, the NDC space for adeviceis 32K
by 32K NDC units. The target device measures
640 by 200 pixels. The size of an NDC pixel is
51 by 164 NDC units. When GSX returns the
value of the pixel to an application, the value

of the bottom left corner of the NDC pixel is
returned by GSX. Therefore, to avoid
cumulative errors caused by round-off
procedures in your application, you should add
an offset of one-half an NDC pixel to the value
returned by GSX when you are transforming
coordinates up and down GSX.

If your device has an aspect ratio that is not

1.1 (that is, the display surfaceis not

square) and you wish to prevent distortion
between your world coordinate system and the
device coordinate system, your application must
use different scaling factorsinthex and Y

axes to compensate for the asymmetry of your
device. For example, if you areusing a
typical CRT device with an aspect ratio of 3:4
(vertical:horizontal) to produce a perfect

GSX Programmer’ s Guide Creating aGIOSFile

square on the display, you would draw afigure
with 4000 NDC units vertically and 3000 NDC
unitshorizontally. That is, the scaling

factor for the vertical dimension is 4/3 of the
horizontal direction. For most noncritical
applications you need not make this adjustment.

Details of the Virtual Device Interface,
including required and optional functions and
arguments, are included in Appendix C, "Virtual
Device Interface Specification.”

CREATING A GIOS Devicedriver filesthat are part of GIOS
FILE must be in standard executable command format so
they can be loaded by GDOS. These filesmay be
renamed to SY S, the default filetype for
GSX GIOSfiles. You can write adevice driver
in any language as long as the functions and
parameter passing conventions conform to the
Virtual Device Interface Specification given
above. After assembling or compiling your
driver source, link it with any required
external subroutines and run-time support
libraries to produce aload module.

The name of a GIOS file can consist of eight
characters or lesswith a SY Sfiletype. In
addition, the driver must be included in the
Assignment Table, which isatext file named
ASSIGN.SY S on the current default drive.

Refer to "Assignment Table Format" in Section 3

for more details about the ASSIGN.SY S and the
correct format for each entry.

End of Section 4

Section 5
OPERATING PROCEDURES

INTRODUCTION This section explains how to use GSX in your
graphics applications.

GSX When you receive your GSX distribution disk,
DISTRIBUTION first check that all required files have been
FILES included.

Refer to your GSX user’s guide for procedures
that check and duplicate the distribution disk.

If any fil esaremissing, contact your
distributor to receiveanew disk. If all

files are present, duplicate the distribution

disk using the PIP utility and store yoir
distribution disk in asafe place. Then, isiig

the duplicate disk, transfer the GSX filesto a
working system disk. Always use the duplicate
disk to generate any new copies of GSX. Do not
use the distribution disk for routine

operations.

RUNNING GRAPHICS To use the graphics features provided by
APPLICATIONS GSX, you must ensure that several conditions
UNDER GSX are met:

1. In your application program you must conform
to the GSX calling convention to access
graphics primitives. Thisinvolves making a
call to the operating system, which points
to aparameter list. Thislist provides
information to GSX and also returns
information to the calling program. The
details of this procedure are contained in
Section 3, "GDOS," ’ Section 4, "GIOS," and
the appendixes.

GSX Programmer’s Guide

DETERMINING MEMORY
REQUIREMENTS

Running Graphics Applications

2. Enough stack space must be available for GSX
operations. Thisincludes abuffer areafor
points passed to GSX and some fixed overhead
space. Theformulato determine the
required stack space is discussed below.

3. Therequired device drivers must be present
on the disk specified in the GSX graphics
mode command, or in the current default
driveif no driveis specified, when your
program is executed. Also, the Assignment
Table (ASSIGN.SY S) must contain the names of
your device drivers and alogical device
number or workstation ID that corresponds to
the correct device -4river. The details of
device dr iver and Assignment Table
requirements are included in Section 3,
"GDOS," and Section 4, "GIOS."

4. After successfully compiling or assembling
and linking your application program you can
run it just like any other program, but
first you must ensure that GSX is active.
Y ou can enable GSX graphics with the GSX
graphics mode command documented in the GSX
user’s guide for your system.

To determine the amount of stack space
required to run a given application, make the
following calculation:

GSX stack requirements:

Open workstation call = approximately 500
bytes

All others= Ptsin size + 128
Ptsin isthe point array passed to the device

driver from the application program (two words
for each point).

GSX Programmer’s Guide Debugging Graphics Application under GSX

DEBUGGING GRAPHICS
APPLICATIONS
UNDER GSX

WRITING A NEW
DEVICE DRIVER

The stack requirement is the largest of the two
resulting values. This stack space must be
available in the application program stack
area.

The memory required by GDOS islessthan 3
kilobytes. Thisisallocated when the GSX
graphics mode command is executed. Space for
the default device driver is also allocated at
thistime. The default device driver should be
the largest device driver so that sufficient
spaceis allocated for other drivers |loaded
during execution of your application.

Graphics programs can be debugged with a
debugger, as can any GSX application. The
default device driver and GDOS are loaded after
the command has been executed. Y our graphics
application program is loaded in the normal
manner for applications on your operating
system.

GSX isdistributed with anumber of device
driversfor popular graphics devices. If your
devices areincluded (refer to your GSX user’s
guide for asummary of the supported devices) ,
you only need to edit the Assignment Tablefile
with atext editor to ensure that it reflects

the logical device number assignments that you
desire. However, if your deviceisnot
supported, you must create adriver program
that conformsto the VDI specification. Y ou
can write adriver in any language, but at

least part of it isusually implemented in
assembler due to the low-level hardware
interface required.

Y our driver must provide the functions listed
asrequired in the VDI specification and must
observe the VDI parameter passing conventions.
In some cases the capability specified by VDI

isnot available in the graphics device and the
function must be emulated by the driver
software. For example, dashed lines can be
generated by the driver if they are not

directly available in the device. The complete
VDI specificationisin Appendix C, and the
parameter passing conventions are discussed in
Section 3, "GDOS," and Section 4, "GIOS.11

End of Section 5

Appendix A

GSX CALLING CONVENTIONS FOR CP/M

INTRODUCTION

GSX SKELETON
DEVICE DRIVER

FORMAT

Input Parameters

Output Parameters

This appendix briefly outlines the components of
a skeleton device driver for GSX on CP/M for
8080 microprocessors. It also summarizesthe
GSX GDOS calling conventions for CP/M.

The GSX skeleton device driver describesthe
components required for a CP/M system.

Function: GSX skeleton device driver

contrl(l) Opcode for driver function
contr 1(2) Number of verticesin array
ptsin. Each vertex consists
of an x and ay coordinate so
the length of thisarray is
twice as long as the number of
vertices specified.
contrl(4) Length of integer array intin
contrl(6-n) Opcode dependent information

intin Array of integer input
parameters

ptsin Array of input coordinate
data

contrl(3) Number of verticesin array
ptsout. Each vertex consists
of an x and ay coordinate so
the length of thisarray is
twice as long as the number of
vertices specified.

contrl(5) Length of integer array
intout

contrl(6-n) Opcode dependent information

intout Array of integer output
parameters
ptsout Array of output coordinate data

A-1

GSX Programmer’s Guide Format

All data passed to the device driver is assumed
to be 2-byte INTEGERS.

All coordinates passed to GSX arein Normalized
Device Coordinates (0-32767 along each axis).
These units are mapped to the actual device
units (for example, rastersfor CRTs or steps

for plotters and printers) by GSX so that all
coordinates passed to the device driver arein
device units.

Because both input and output coordinates are
converted by GSX, both the calling routine and
the device driver must ensure that the input
vertex count (contrl(2)) and output vertex
count (contrl(3)) are set. The calling routine
must set contrl(2) to O if no x,y coordinates
are being passed to GSX. Similarly, the device
driver must set contrl(3) to O if no X,y
coordinates are being returned through GSX.

Because 0-32767 maps to the full extent on each
axis, coordinate values are scaled differently
on the x and y axes of devicesthat do not have

asquare display.

The BDOS call to access GSX and the GIOSin
CP/M isasfollows:

BDOS opcode (in C register) for GSX call =115
Parameter Block (addressis passed in DE):

PB Address of contrl
PB+ls Address of intin
PB+2s Address of ptsin
PB+3s Address of intout
PB+4s Address of ptsout

sisthe number of bytes used for each argument
in the parameter block. For CP/M, thisis 2
bytes.

A-2

GSX Programmer’s Guide

GDOS CALLING
CONVENTIONS

Format

All opcodes must be recognized, whether they
produce any action or not. A list of required
opcodes for CRT devices, plotters, and printers
follows the specification. These opcodes must

be present and perform as specified. All
opcodes should be implemented whenever possible
because this gives better quality graphics.

For CP/M, devicedriver I/O is done through
BDOS (Basic Disk Operating System) calls. CRT
devices are assumed to be the console device.
Plotters are assumed to be connected as the
reader or punch device. Printers are assumed

to be connected as the list device.

TheGDOScaling sequenceissummarized
below.

Function code (in register C) = 115
Parameter block addressin register DE

Parameter Block Contents:

PB Address of control array

PB+2 Address of input parameter array

PB+4 Address of input point coordinate
array

PB+6 Address of output parameter array

PB+8 Address of output point coordinate
array

Control Array on Input:

contrl(l) Opcode for driver function
contrl(2) Number of verticesin input
point array

contrl(4) Length of input parameter array
contrl(6-n) Opcode dependent

A-3

GSX Programmer’s Guide

Format
Input Parameter Array:
intin ~ -- Array of input parameters
Input Coordinate Array;
ptsin -- Array of input coordinates
(each point is specified by an
X and Y coordinate given in

Normalized Device Coordinates
between 0 and 32,767)

End of Appendix A

A-4

Appendix B

GSX CALLING CONVENTIONS
FOR CP/M, IBM PC DOS, AND MS-DOS

INTRODUCTION

GDOS CALLING
SEQUENCE

This appendix outlines the GSX calling sequence
for the GDOS, the procedure for invoking device
drivers, and error messages when you use GSX on
CP/M-86, IBM PC DOS, and MS-DOS.

The GDOS calling sequence is outlined below.
Access viainterrupt 224

Function code (in register Cx) = 0473h (hex)
Parameter block address in registers Ds-segment
and Dx-offset

Parameter Block Contents:

PB Double-word address of control array

PB+4 Double-word address of input
parameter array

PB+8 Double-word address of input point
coordinate array

PB+12 Double-word address of output
parameter array

PB+16 Double-word address of output point

coordinate array
Control Array on Inpuit:

contrl(l) Opcode for driver function

contrl(2) Number of vertices (not
coordinates) in input
coordinate point array
(ptsin)

contrl (4) Length of input parameter

array
contrl(6-n) Opcode dependent (intin)

B-1

GSX Programmer’s Guide GDOS Caling Sequence

Input Parameter Array:

intin -- Array of input parameters
(length of array is opcode
dependent and specified in
contrl(4))

Input Point Coordinate Array:

ptsin -- Array of input coordinates
(each point is specified by
an X and Y coordinate pair
given in Normalized Device
Coordinates between 0 and
32,767 with length
contr 1 (2) 2)

Control Array on Output:

contrl(3) Number of vertices (not
coordinates) in output point
array (ptsout)

contrl(5) Number of elementsin output

parameter array (intout)
contrl(6-n) Opcode dependent

Output Parameter Array:

intout -- Array of output parameters
(length of array is opcode
Dependent)

Output Point Coordinate Array:

ptsout -- Array of output coordinates
(each point is specified by
an X andY coordinate pair
given in Normalized Device
Coordinates between 0 and
32,767) must be greater than
the largest possible value of
contrl (5) *2.

B-2

GSX Programmer’s Guide

GDOS Caling Sequence

All array elements are type INTEGER (2 bytes)
All arrays are 1-based; that is, the double-

word address at PB pointsto the first element

of the control array (contr 1 (1)) . The meaning
of the input and output parameter arraysis
dependent on the opcode. See Appendix C,
"Virtual Device Interface Specification,” for
details.

GDOS preserves the BP (base pointer) and DS
(data segment) registers. All other registers
are subject to change when returned f rom GDOS.

INVOKING DEVICE Device drivers are invoked with a Callf from

DRIVERS

CGroup

GSX and should return with aRetf. Thedriver
must switch to its own stack for internal use,
except for an allowed overhead for afew pushes
to save the caller ' s context. Thefollowing
entry procedure is recommended to provide an
error free calling sequence:

Group Driver-Code

Driver-Code

Driver: Mov
Mov

CSeg
Public Driver

AX,Sp Save caller’ s stack pointers
Bx,Ss

Notethat Mov Ssxxx Mov Sp,xxx isnot interruptible on 8086/8088.

Mov
Mov

Push
Push
Push
Push
Push
Pushf

Ss,StackBase : Switch to driver’s stack
Sp,Offset Top_Stack

Bx
AX
BP
Ds
DX

; Push caller’s stack pointer

; Save caller’sframe
; Save parameter pointer

; Save caller’ sdirection flag

B-3

GSX Programmer’s Guide Invoking Device Drivers

; Invoke the driver. Ds:Dx pointsto the parameter block.
: It returns with a Retf.

Callf

popf
Pop
pop
Pop
Pop
Pop

Mov
Mov

Retf

StackBase

Dd Driver Invoke the driver with DS:DX
Restore caller’ sdirection flag

Dx Restore caller’s Ds:Dx
Ds
Bp Restore caller’ s stack frame
AX Restore caller’s Ss:Sp
Bx via

Ss,Bx Bx

Sp!AX and Ax

Dw Seg --op-Stack

Dd-Driver-Code CSeg
Extrn Dd-Driver ‘Far

Stack

SSeg

Rs

16 This module pushes 8 words

Top-Stack is defined in the last module linked in.

Extrn Top-Stack ‘Byte

End

After coding, assembling and linking your

device driver, you have aCMD fileif you use

CP/M. First changethefiletypeto SY Susing

the CP/M RENAME command or a similar command
for your operating system:

A>REN GIOSXX.SY S=GIOSXX.CMD

Then, to make this driver known to GSX, include
its namein the Assgnment Table. Thistable

B-4

GSX Prograrnmer’s Guide

ERROR 14ESSAGES

Error Messages

islocated in file ASSIGN.SYSand issimply a
text file with a specific format containing the
names of driver files and the logical device
numbers or workstation 1Ds that you wish to
associate with particular devices. Refer to
Section 3, "GDOS," or Section 4, "GIOS," for
details.

In general, registers and flags (including the
direction flag) are not restored upon returning
fromacal to GSX. The GIOSfile will
preserve the DS, SS and CSregisters and BP and
SP, but it is not required to preserve any

others. GSX does not change any registers as
returned from the GIOS except during an OPEN
WORKSTATION command. Inthiscase Ax is
modified to return status information (the
flags are also modified by this command).

The meaning of the contents of Ax on returning
from the OPEN WORKSTATION call isasfollows:

AL=0 workstation opened successfully

AL=255 error condition--Jevice driver riot
loaded. Inthiscase AH hasa
further meaning:

AH

0 ASSIGN.SY S not found

1 Syntax error in ASSIGN.SY S

2 Device ID not found in ASSIGN.SY S
3 Close error on ASSIGN.SY S

4 Devicedriver file specifiedin

ASSIGN.SY S not found

5 Devicedriver file specifiedin
ASSIGN.SY S empty

6 Syntax error onfile specifiedin
ASSIGN.SYS (that is, absolute code
segment or not CMD format)

7 Not enough room for file specified

B-5

GSX Programmer’ s Guide

Error Messages

If aread error occurs during the transfer of a

GIOS filewhen an OPEN WORKSTATION cal isin
progress, the application programis

terminated, a message is displayed, and control

is returned to the operating system user

interface module. The following error messages

can be displayed in response to GSX calls:

GSX CSIP GIOS load error on Id xxxxh (hex)

An error occurred while transferring the device
driver from disk. The value of the CS:IP and
the device ID are also shown.

GSX CSIPGIOSinvdlid

The currently loaded device driver isinvaid.
This error probably occurred after aload error
when the application does not perform an OPEN
WORKSTATION command as the first graphics
operation.

GSX CSIP Illega function: (Cx)

An invalid function code (@0473h) was
specified inCx. The erroneous codeis

displayed.

Refer to the GSX user’ s guide for your system
for additional error messages output by GSX.

End of Appendix B

B-6

Appendix C

VIRTUAL DEVICE INTERFACE (VDI) SPECIFICATION

INTRODUCTION

FORMAT

Input Parameters

Output Parameters

This appendix contains the specification of the
Virtual Device Interface (VDI) . The VDI
defines how device driversinterface to GDOS,
the device-independent portion of GSX. The
context for this document is from the DEVICE
DRIVER point of view. All coordinate
information is assumed to be in device
coordinate space.

Function: GSX graphics operation

contrl(l) Opcode for driver function.
contrl(2) Number of verticesin array
ptsin. Each vertex consists
ofanx anday coordinate
pairso thelength of this
array is twiceaslong asthe
number of vertices specified.
contrl(4) Lengthof integer array intin.
contrl(6-n) Opcode dependent information.

intin Array of integer input
parameters.
ptsin Array of input point

coordinate data.

contrl(3) Number of verticesin array
ptsout. Each vertex consists
of an x and ay coordinate
pair so the length of this
array istwice aslong as the
number of vertices specified.
Other data may be passed back
here depending on the opcode.
contrl(5) Length of integer array
intout.
contrl(6-n) Opcode dependent information.

C-1

GSX Programmer’s Guide

Notes

Format
intout Array of integer output point
parameters.
ptsout Array of output point

coordinate data.

All data passed to the device driver is assumed
to be 2-byte INTEGERS, including individual
charactersin character strings.

All coordinates passed to GSX arein Normalized
Device Coordinates (0-32767 along each axis).
These units are then mapped to the actual

device units (for example, rastersfor CRTs or
steps for plotters and printers) by GSX so that

all coordinates passed to the device driver are

in device units.

Because both input and output coordinates are
converted by GSX, both the calling routine and
the device driver must make sure that the input
vertex count (contrl(2)) and output vertex
count (contrl(3)) are set. The caling routine
must set contrl(2) to O if no x,y coordinates

are are being passed to GSX. Similarly, the
device driver must set contrl(3) to O if no X,y
coordinates are being returned through GSX.
Coordinates returned by GSX are assumed to be
the bottom left edge of the pixel. Asa
consequence, points at the top and right edges
of the device coordinate system will not be at
the edge of the Normalized Device Coordinates
(NDC) system. Exactly how far away they will
beis device dependent.

Because 0-32767 maps to the full extent on each
axis, coordinate values are scaled differently
on the x and y axes of devicesthat do not have

asquare display.

GSX Programmer’s Guide

Format

All references to arrays are 1-based; that is,
subscripted element | isthefirst element in
the array.

On calls to the GDOS the number of arguments
passed in theintin array (contrl (4)) , and the
maximum size of the intout array (contrl(5))

should be set by the application. On return to

the GDOS by the GIOS the number of argumentsin
the intout array should be set by the GIOS.

Refer to Appendixes A and B for GDOS calling
conventions for specific operating systems.

All opcodes must be recognized, whether or not
they produce any action. If an opcode is out

of range then no action is performed. A list

of required opcodes for CRT devices, plotters,
and printers follows the specification. These
opcodes must be present and perform as
specified. All opcodes should be implemented
whenever possiblesincefull implementation
gives better quality graphics.

Devicedriver I/O (thatis, communication
between the device driver and the devicevia
the system hardware ports) is done through
operating system calls.

C-3

GSX Programmer’s Guide
OPEN WORKSTATION

I nput

Output

Open Workstation
Initialize a graphic workstation.

contrl(l) Opcode =1

contrl(2) 0

contrl(4) Length of intin = 10

intin Initial defaults (for example,
lifestyle color and character
size)

intin(l) Workstation identifier (device

driver id). Thisvaueisused
to determine which device
driver to dynamically load into

memory.
intin(2) Linetype
intin(3) Polyline color index
intin(4) Marker type
intin(5) Polymarker color index
intin(6) Text font
intin(7) Text color index
intin(8) Fill interior style
intin(9) Fill styleindex
intin(10) Fill color index
contrl(3) Number of output vertices 6

contrl(5) Length of intout = 45
intout(l) Maximum addressable width of
screen/plotter in rasters/
steps assuming a 0 start point
(for example, aresolution of
640 implies an addressable area
of 0-639, so intout(l)=639)
intout (2) Maximum addressable height of
screen/plotter in rasters/
steps assuming a 0 start point
(for example, aresolution of
480 implies an addressable area
of 0-479, so intout(2)=479)
intout(3) Device Coordinate units flag

0 Device capable of
producing precisely scaled
image (typically plotters
and printers)

C-4

GSX Programmer’s Guide

intout(4)

intout(5)

intout(6)

intout(7)
intout(3)
intout(9)
intout(10)
intout(l)
intout(12)
intout(13)
intout(14)

intout(15)

intout(16)-
intout(25)

intout(26)-

Open Workstation

1 Device not capable of
precisely scaled image
(CRTS)

Width of one pixel (plotter
step, or aspect ratio for CRT)
in micrometers
Height of one pixel (plotter
step, or aspect ratio for CRT)
in micrometers

Number of character heights
0 = continuous scaling

Number of linetypes
Number of line widths
Number of marker types
Number of marker sizes
Number of fonts
Number of patterns
Number of hatch styles
Number of predef ined colors
(must be at least 2 even for
monochrome device). Thisis
the number of colors that can
be displayed on the device
simultaneoudly.
Number of Generalized Drawing
Primitives (GDPS)

Linear list of GDP numbers
supported -1 no more GDPsin
list. Application should
search list until finding a-1

for the desired GDP.

bar

arc
piedice
circle
ruling chars

O WNPE

GSX Programmer’s Guide

intout(35)

intout(36)

intout(37)

intout(38)

intout(39)

intout(40)

intout(41)

Open Workstation

Linear list of attribute set
associ ated with each GDP

-1 nomore GDPs
0 polyline

1 polymarker

2 text

3 fill area

4 none

Color capability flag
0 no
1 vyes

Text rotation capability
flag

Fill area capability flag

0 no

1 vyes

Read cell array operation
capability flag

0 no
1 vyes

Number of available colors
(total number of colorsin
color palette)

0 continuous device
(more than 32767 colors)

2. monochrome (black and
white)

>2 numberof colors
available

Number of locator devices
available

C-6

GSX Programmer’s Guide Open Workstation

intout(42) Number of valuator devices

available

intout(43) Number of choice devices
available

intout(44) Number of string devices
available

intout(45) Workstation type

0 Output only
1 Inputonly
2 Input/Output
3 Deviceindependent segment
storage
4 GKS Metafile output
Ptsout(l) 0
ptsout(2) Minimum character height in
device units (not cell size)
ptsout(3) 0
ptsout(4) Maximum character height in
device units (not cell size)
ptsout(5) Minimum line width in device
units
ptsout(6) 0
ptsout(7) Maximum line width in device
units
ptsout(8) 0
ptsout(9) 0

ptsout(10) Minimum marker height in device
units (not cell size)

ptsout(ll) O

ptsout(12) Maximum marker height in device
units (not cell size)

The default color table should be set up
differently for amonochrome and a color
device.

Monochrome CRT type devices

GSX Programmer’ s Guide

Open Workstation

Index Color
0 Black
1 White

Monochrome Printer/Plotter devices

Index Color
0 White
1 Black
Color
Index Color
0 Black
1 Red
2 Green
3 Blue
4 Cyan
5 Ydlow
6 Magenta
7 White
8-n White

Other default values that should be set by the
driver during initialization are as follows:

Character height = Minimum character
height

Character up vector = 90 degrees
counterclockwise from
the right horizontal (O

degrees rotation)
Linewidth = 1 device unit (raster,
plotter step)
marker height = Minimum marker height
Writing mode = Replace
Input mode = Request for al input

classes (locator,
valuator, choice,
string)

C-8

GSX Programmer’s Guide Close Workstation

Description The Open Workstation operation causes a graphics
device to become the current device for the
application program. Thedeviceisinitialized
with the parametersin the input array and

information about the device is returned to
GDOS. The graphic deviceis selected, and, if
itisaCRT, the screenis cleared and the
alphadeviceis deselected and blanked.

CLOSE WORKSTATION Stop al graphics output to this workstation.

Input
contrl() opcode=2
contrl(2) O
Output contrl(3) O
Description The Close Workstation operation terminates the

graphics device properly and prevents any
further output to the device. If the deviceis
aCRT, the alpha deviceis selected, the screen
iscleared, and thegraphicsdeviceis
deselected and blanked. If thedeviceisa
printer, then an update is executed.

CLEAR WORKSTATION Clear CRT screen or prompt for new paper on

plotter.
Input
contrl() Opcode=3
contrl(2) O
Output contrl(3) O
Description The Clear Workstation operation causes CRT

screensto beerased. If thedeviceisa
plotter without paper advance, the operator is
prompted to load anew page. If thedeviceis
aprinter aform feed isissued and then an
update is executed.

C-9

GSX Programmer’s Guide Update Workstation

UPDATE WORKSTATION Display al pending graphics on workstation.

Input contrl(l) Opcode =4
contrl(2) 0
Output contrl(3) 0
Description The Update Workstation operation causes all

pending graphics commands that are queued to be
executed immediately. The operation is
analogous to flushing buffers. For printer
driversthis call must be used to start output

to the printer.

ESCAPE Perform device specific operation.

Input contrl(l) Opcode=5
contrl(2) Number of input vertices
contrl(4) Number of input parameters
contrl(6) Function identifier

1 = INQUIRE ADDRESSABLE CHARACTER
CELLS

2 = ENTER GRAPHICS MODE

3 = EXIT GRAPHICS MODE

4 = CURSORUP

5 = CURSOR DOWN

6 = CURSORRIGHT

7 = CURSOR LEFT

8 = HOME CURSOR

9 = ERASETOEND OF SCREEN

10 = ERASETOEND OF LINE

11 = DIRECT CURSOR ADDRESS

12 = OUTPUT CURSOR ADDRESSABLE TEXT

13 = REVERSEVIDEO ON

14 = REVERSE VIDEO OFF

15 = INQUIRE CURRENT CURSOR ADDRESS

16 = INQUIRE TABLET STATUS

17 = HARDCOPY

18 = PLACE GRAPHIC CURSOR AT

LOCATION

C-10

GSX Programmer’s Guide Escape

19 = REMOVE LAST GRAPHIC CURSOR
20-50 = UNUSED BUT RESERVED FOR FUTURE
EXPANSION
51-100 = UNUSED AND AVAILABLE FOR USE
intin Function dependent information
(described on following pages)
ptsin Array of input coordinates for

escape function

Output contrl(3) Number of output vertices
contrl(5) Number of output parameters

intout Array of output parameters
ptsout Array of output coordinates
Description The Escape operation allows the special

capabilities of agraphics deviceto be

accessed from the application program. Some
escape functions above are predefined, but
others can be defined for your particular
devices. The parameters passed are dependent
on the function being performed.

C-11

GSX Programmer’s Guide
ESCAPE: INQUIRE
ADDRESSABLE
CHARACTER CELLS

Input

Output

Description

Escape

Return the number of alpha cursor addressable
columns and a pha cursor addressable rows.

contrl(2) O
contrl(6) Function ID =

contr1(3) O

intout(l) Number of addressable rows on
the screen, typically 24 (-

indicates cursor addressing not

possible)

intout(2) Number of addressable columnson
the screen, typically 80 (-l
indicatescursor addressing
not possible)

This operation returns information to the
calling program about the number of vertical
(rows) andhorizontal (columns) positionswhere
the alpha cursor can be positioned on the
screen.

C-12

GSX Programmer’s Guide Escape

ESCAPE: ENTER Enter graphics mode if different from alpha
GRAPHICS MODE mode.
Input contrl(2) 0
contrl(6) Functionid =2
Output contrl(3) 0
Description Thisoperation causes the graphics device to

enter the graphics mode if different than the
aphamode. Used to explicitly exit alpha
cursor addressing mode and to transition from
alphato graphic mode properly. The graphics
deviceis selected and cleared. Theapha
device is deselected and blanked.

ESCAPE: EXIT Exit graphics mode if different from alpha
GRAPHICS MODE mode.
Input contrl(2) 0
contrl(6) Functionid=3
Output contrl(3) 0
Description The Exit Graphics operation causes the graphics

deviceto exit the graphics mode if different
than the alpha mode. used to explicitly enter
the alpha cursor addressing mode and to
transition from graphics to apha mode
properly. The alphadeviceis selected and
cleared. The graphics device is deselected and
blanked.

C-13

GSX Programmer’s Guide

ESCAPE: CURSOR UP

Input

Output

Description

ESCAPE: CURSOR
DOWN

Input

Output

Description

Escape

Move apha cursor up one row without atering
horizontal position.

contrl(2) O
contrl(6) Functionid =4

contrl(3) O

This operation moves the apha cursor up one row
without altering the horizontal position. Tf

the cursor is already at the top margin, no

action results.

Move alpha cursor down one row without
altering horizontal position.

contrl(2) O
contrl(6) Functionid =5

contrl(3) O

This operation moves the alpha cursor down one
row without altering the horizontal position.

If the cursor is aready at the bottom margin,

no action results.

C-14

GSX Programmer’s Guide
ESCAPE: CURSOR
RIGHT

I nput

Output

Description

ESCAPE: CURSOR
LEFT

I nput

Output

Description

Escape

Move alpha cursor right one column without
altering vertical position.

contrl(2) O
contrl(6) Functionid =6

contrl(3) O

The Cursor Right operation moves the alpha
cursor right one column without altering the
vertical position. If the cursor is already at
the right margin, no action results

Move alpha cursor left one column without
altering vertical position.

contrl(2) O
contrl(6) Functionid =7

contrl(3) O

The Cursor Left operation causes the alpha
cursor to move one column to the left without
altering the vertical position. If the cursor
isaready at the left margin, no action

results.

C-15

GSX Programmer’s Guide
ESCAPE: HOME
CURSOR

Input

Output

Description

ESCAPE: ERASE TO
END OF SCREEN

Input

Output

Description

Escape

Send cursor to home position.

contrl(2) 0
contrl(6) Functionid=8

contrl(3) O

Thisoperation causes the apha cursor to move
to the home position, usually the upper left
corner of aCRT display.

Erase from current alpha cursor position to
the end of the screen.

contrl(2) 0
contrl(6) Functionid=9

contrl(3) 0

This operation erasesthe display surface from
the current alpha cursor position to the end of
the screen. The current alpha cursor location
does not change.

C-16

GSX Programmer’s Guide Escape

ESCAPE: ERASE TO Erase from the current alpha cursor position

END OF LINE to the end of the line.
Input contrl(2) 0
contrl(6) Functionid =10
Output contrl(3) 0
Description Thisoperation erases the display surface from

the current alpha cursor position to the end of
the current line. The current alpha cursor
location does not change.

ESCAPE: DIRECT Move apha cursor to specified row and
CURSOR ADDRESS column.

Input contrl(2) 0
contrl(6) Functionid =11
intin(l) Row number (I - number of rows)
intin(2) Column number (I - number of
columns)
Output contrl(3) 0
Description The Direct Cursor Address operation moves the

alphacursor directly to the specified row and

column address anywhere on the display surface.

Addresses that are beyond the range that can be

displayed on the screen are set to the maximum
row and/or column accordingly.

C-17

GSX Programmer’s Guide

ESCAPE: OUTPUT
CURSOR ADDRESSABLE
TEXT

Input

Output

Description

Escape

Output text at the current alpha cursor
position.

contrl(2) O

contrl (4) Number of characters in
character string

contrl(6) Functionid =12

intin Text stringin ASCII

contrl(3) O

This operation displays a string of text
starting at the current cursor position. Alpha
text characteristics are determined by the
attributes currently in effect (for example,
reverse video).

C-18

GSX Programmer’s Guide

ESCAPE: REVERSE
VIDEO ON

I nput

Output

Description

ESCAPE: REVERSE

VIDEO OFF

I nput

Output

Description

Escape

Display subsequent cursor addressable text in
reverse video.

contrl(2) O
contrl(6) Functionid 13

contrl(3) O
This operation causes all subsequent text to be

displayed in reverse video format; that is,
characters are dark on alight background.

Display subsequent cursor addressable text in
standard video.

contrl(2) O

contrl(6) Functionid =14

contrl(3) O

This operation causes all subsequent text to be

displayed in normal video format; that is,
characters are light on a dark background.

C-19

GSX Programmer’s Guide

ESCAPE: INQUIRE
CURRENT CURSOR
ADDRESS

Input

Output

Description

ESCAPE: INQUIRE

TABLET STATUS

Input

Output

Description

Escape

Return the current cursor position.

contrl(2) O

contrl(6) Functionid =15

contrl(3) O

intout() Row number (1 - number of rows)

intout(2) Column number (1 - number of

columns

Thisoperation returns the current position of
the alpha cursor in row, column coordinates.

Return tablet status.

contrl(2) O

contrl(6) Functionid =16
contrl(3) O

intout(l) tablet status

0 = tablet not available
1 =tablet available

This operation returns tabl et status whether a
graphics tablet, mouse, joystick, or other
similar devices are connected to the
workstation.

C-20

GSX Programiner’s Guide Escape

ESCAPE: HARD COPY Generate hardcopy.

Input contrl(2) 0
contrl(6) Functionid =17
Output contrl(3) 0
Description This operation causes the device to generate a

hardcopy. Thisfunction isvery device
specific and can entail copying the screen to a
printer or other attached hardcopy device.

ESCAPE: PLACE Place agraphic cursor at specified location
GRAPHIC CURSOR
AT LOCATION
Input contrl(2) 2
contrl(6) Function id =18
ptsin(l) x-coordinate of location to
place cursor
ptsin(2) y-coordinate of location to
place cursor
Output contrl(3) 0
Description Place Graphic Cursor at the specified location.

Thisis device dependent and can be an

underbar, block, or similar character. This
cursor should be the same type as used for
request mode locator input. Inthisway, if
sample mode input is supported, the application
may use this call to generate the cursor for
rubber band type d-awing. In memory mapped
devices, it isdrawn in XOR mode so that it can
be removed. The cursor has no attributes; for
example, style or color index.

C-21

GSX Programmer’s Guide

ESCAPE: REMOVE
LAST GRAPHIC CURSOR

Input

Output

Description

Escape

Remove last graphic cursor/marker.

contrl(2) O
contrl(6) Functionid = 19

contrl(3) O

This operation removes the last graphic cursor
placed on the screen.

C-22

GSX Programmer’s Guide Polyline

POLYLINE Output a polyine to device.
Input contrl(l) opcode = 6
contrl(2) Number of vertices (X,y pairs)
in polyline (n),
ptsin Array of

coordinates of
polylinein device
units (for
example, rasters
and plotter steps)

ptsin(l) x-coordinate of
first point
ptsin (2) y-coordinate of
first point
ptsin (3) x-coordinate of
second point
ptsin(4) y-coordinate of
second point

ptsin(2n-1) x-coordinate of

last point
ptsin(2n) y-coordinate of
last point
Output contrl(3) 0
Description This operation causes a polyline to be displayed

on the graphics device. The starting point for
the polyline isthe first point in the input

array .Lines are drawn between subsequent
pointsin the array. Make sure that the lines
exhibit the current line attributes: color,
linetype, line width. O length lines should be
displayed. A single coordinate pair should not
be displayed.

C-23

GSX Programmers’ Guide Polymaker

POLYMARKER Output markers to the device.
Input contrl(l) Opcode=7
contrl(2) Number of markers
ptsin Array of coordinatesin (device

units (n) (for example, rasters
and plotter steps)

ptsin(l) x-coordinate of
first marker
ptsin(2) y-coordinate of
first marker
ptsin(3) x-coordinate of
second marker
ptsin(4) y-coorclinate of
second marker
ptsin(2n-1) x-coordinate of last marker
ptsin(2n) y-coordinate of last marker

Output contrl(3) 0

Description This operation causes markers to be drawn at the
points specified in the input array. Make sure
the markers display the current attributes:
color, scale, and type.

C-24

GSX Programmer’s Guide

TEXT

I nput

Output

Description

Text

Write text at specified position.

contrl(l) Opcode =8

contrl(2) Number of vertices=1

contrl(4) Number of charactersin text
string

intin Word character string in ASCI|

ptsin(l) x-coordinate of start point of
text in device units

ptsin(2) y-coordinate of start point of

text in device units
contrl(3) O

This operation writes text to the display
surface starting at the position specified by
the input parameters. Note that the X,Y
position specified is the lower left corner of
the character itself, not the character cell.
Also, make sure the text exhibits current text
attributes: color, height, character up
vector, font. Each word of the intin array
containsonly one character. Any character
code out of range for the selected font should
be mapped to a blank.

C-25

GSX Programmers Guide Filled Area

FILLED AREA Fill apolygon.
Input contrl(l) Opcode=9
contrl(2) Number of verticesin polygon
(n)
ptsin Array of coordinates of polygon
in device units

ptsin(l) x-coordinate of first point
ptsin(2) y-coordinate of first point
ptsin(3) x-coordinate of second point
ptsin(4) y-coordinate of second point

ptsin(2n-1) x-coordinate of last point
ptsin(2n) y-coordinate of last point

Output contrl(3) O

Description This operation fills a polygon specified by the
input array with the current fill color.
Ensure the correct color, fill interior style
(hollow, solid, pattern or hatch) and fill
styleindex are in effect before doing the
fill.

If the device cannot do areafill, it must at
least outline the polygon in the current fill
color. The device driver must ensure that the
fill areais closed by connecting the first

point to the last point.

A polygon with zero area should be displayed as
adot. A polygon with only one endpoint should
not be displayed.

C-26

GSX Programmer’s Guide

CELL ARRAY

I nput

Output

Description

Cell Array

Display cell array.

contrl(l) opcode = 10

contrl(2) 2

contrl(4) Length of color index array

contrl(6) Length of each row in color
index array (size as declared
inahigh level language)

contrl (7) Number of elements used in each
row of color index array

contrl(B) Number of rowsin color index
array

contrl(9) Pixel operation to be performed
1 replace
2 overstrike
3 complement (xor)
4 erase

intin(l) Color index array (stored one
row at time)

ptsin(l) x-coordinate of lower left
corner in device units

ptsin(2) y-coordinate of lower |eft
corner in device units

ptsin(3) x-coordinate of upper right
corner in device units

ptsin(4) y-coordinate of upper right
corner in device units

contrl(3) 0

The Cell Array operation causes the device to
draw arectangular array which is defined by
the input parameter X,Y coordinates and the
color index array.

C-27

GSX Programmer’s Guide

Cell Array

The extents of the cell are defined by the
lower |eft-hand and the upper right-hand X,Y
coordinates. Within the rectangle defined by
those points, the color index array specifies
colorsfor individual components of the cell.

Each row of the color index array should be
expanded to fill the entire width of the
rectangle specified if necessary, viapixel
replication. Each row of the color index array
should also be replicated the appropriate
number of timesto fill the entire height of

the rectangular area.

If the device cannot do cell arraysit must at
least outline the areain the current line
color.

C-28

GSX Programmer’s Guide

GENERALLIZED
DRAWING PRIMITIVE
(GDP)

Input contrl(l)
contrl(2)
contrl(4)
contrl(6)

Generalized Drawing Primitive

Output a primitive display element.

Opcode = 11

Number of verticesin ptsin
Length of input array intin
Primitiveid

1--BAR --usesfill area
attributes (interior
style, fill style, fill
color)

2-- ARC uses ne

attributes(co or
linetype, width)

3-- PIESLICE -- usesfill
area attributes (interior
style, fill style, fill
color)

4 -- CIRCLE -- usesf ill area
attributes (interior
style, fill style, fill
color)

5-- PRINT GRAPHIC CHARACTERS

(RULING CHARACTERYS)
6 -- 7 are unused but reserved
for future expansion
8--10 areunused and
available for use

ptsin -- Array of
coordinates for
GDP

ptsin(l) -- x-coordinate of
first point

ptsin(2) -- y-coordinate of
first point

C-29

GSX Programmer’s Guide

intin

BAR

Generalized Drawing Primitive

ptsin(3) -- x-coordinate of
second point

ptsin(4) -- y-coordinate of
second point

ptsin(2n-1) -- x-coordinate of
last point
ptsin(2n) -- y-coordinate of
last point
Data record

contrl(2) 2 (number of
vertices
contrl(6) 1 (primitive ID)
ptsin(l) x-coordinate of
lower left-hand
corner of bar
ptsin(2) y-coordinate of
lower left-hand
corner of bar
ptsin(3) x-coordinate of
upper right-
hand corner of
bar
ptsin(4) y-coordinate of
upperright-
hand corner of
bar ARC AND PIE
SLICE
contrl(2) 4 (number of
vertices)
contrl(6) 2 (ARC) or3
(PIE SLICE)
intin(l) Start angle in
tenths of
degrees (0-
3600)
intin (2) Endangle in
tenths of
degrees (0-
3600)

C-30

GSX Programmer’s Guide Generalized Drawing Primitive

ptsin(l) x-coordinate of
center point of
arc

ptsin(2) y-coordinate of
center point of
arc

ptsin(3) x-coordinate of
start point of
arc on
circumference

ptsin(4) y-coordinate of
start point of
arc on
circumference

ptsin(5) x-coordinate of
end point of
arc on circumference

ptsin(6) y-coordinate of
end point of
arc on
circumference

ptsin(7) Radius

ptsin(3) 0

CIRCLE contrl(2) 3 number of

points)

contrl(6) 4 (primitive id)

ptsin(l) x-coordinate of
center point of
circle

ptsin(2) y-coordinate of
center point of
circle

ptsin(3) x-coordinate of
point on
circumference

ptsin(4) y-coordinate of
point on
circumference

ptsin(5) Radius

ptsin(6) 0

C-31

GSX Programmer’s Guide Generalized Drawing Primitive

Output

Description

PRINT GRAPHIC CHARACTERS For graphicson
printer(such
as Diablo and
Epson)

contrl(2) 1 (number of
points)

contrl(4) Number of
charactersto
output

contrl(6) 5

intin Graphic
charactersto
output

ptsin(l) x-coordinate of
start point of
characters

ptsin(2) y-coordinate of
start point of
characters

contrl(3) 0

The Generalized Drawing Primitive (GDP)
operation allows you to take advantage of the
intrinsic drawing capabilities of your graphics
device. Specia elements such asarcsand
circles can be accessed through this mechanism.
Severa primitive identifiers are predefined

and others are available for expansion.

The control and data arrays are dependent on
the nature of the primitive.

In some GDPs (Arc, Circle, Pie slice) redundant
but consistent information is provided. Only
the necessary information for a particular
device need be used. Also, dl angle

specif ications assume that O degreesis 90
degrees to the right of vertical, with values
increasing in the counterclockwise direction.

C-32

GSX Programmer’s Guide Set Character Height

SET CHARACTER Set character height.

HEIGHT
Input contrl(l) Opcode = 12
contrl(2) Number of vertices=1
ptsin(l) 0
ptsin(2) Requested character height in
device units (rasters, plotter
steps)
Output contrl(3) Number of vertices= 2
ptsout(l) Actual character width selected
in device units
ptsout(2) Actual character height selected
in device units
ptsout(3) Character cell width in device
units
ptsout(4) Character cell height in device
units
Description This operation sets the current text character
height in Device Units. The specified height
isthe height of the character itself rather
than the character cell. The driver returns
the size of both the character and the
character cell. The character sizeis defined
asthe size of an uppercase W. If the
reguested size does not exist, a smaller size
should be used.
10000010
10000010
10000010
10010010 CHARACTER HEIGHT CELL HEIGHT
10101010
11000110
ORIGIN OF ROTATION 10000010 BASE LINE

00000000

C-33

GSX Programmer’s Guide Set Character Up Vector

10000010 --==-=======s=smseomonennaeannanaaan
10000010 | |
10000010 | |
10010010 |-CHARACTER HEIGHT |- CELL HEIGHT
10101010 | |
11000110 | |
ORIGIN OF ROTATION 10000010 --| <-BASE LINE |
00000000----==============mmmmmmmmmmm o mm
SET CHARACTER UP Set text direction.
VECTOR
Input contrl(l) opcode = 13
contrl(2) 0
intin(l) Requested angle of rotation of
character baseline (in tenths
of degrees 0 - 3600)
intin(2) Run of angle cos (angle) *
100 (0-100)
intin(3) Rise of anglesin (angle) *
100 (0-100)
Output contrl(3) 0
contrl(5) 1
intout(l) Angle of rotation of character
baseline selected (in tenths of
degrees 0-3600)
Description This operation requests an angle of rotation

specif ied in tenths of degrees for the
CHARACTER UP VECTOR, which specifiesthe
baseline for subsequent text. The driver

returns the actual up direction that is a best

fit match to the requested value.

For convenience, redundant but consistent
information is provided on input. Only
information pertinent to a given device need be
used. The angle specification assumes that O
degreesis 90 degrees to the right of vertical

C-34

GSX Programmer’s Guide Set Color Representation

(east on a compass), with anglesincreasing in
the counterclockwise direction.

90
|
180 ------- 0
|
270
SET COLOR Specify color index value.
REPRESENTATION
Input contrl(l) opcode = 14
contrl(2) 0
intin(l) Color index
intin(2) Red color intensity (in
tenths of percent O- 1000)
intin(3) Green color intensity
intin(4) Blue color intensity
Output contrl(3) 0
Description This operation associates a color index with the

color specified in RGB units. At least two
color indexes are required (black and white for
monochrome). On a monochrome device, any
percentage of color should be mapped to white.
On color devices without palettes, asimple
remapping of the color indexesis sufficient.

On color devices with palettes, loading the
palette map is the proper operation. If the

color index requested is out of range, no
operation is performed.

C-35

GSX Programmer’s Guide

SET POLYLINE
LINETYPE

I nput

Output

Description

Set Polyline Linetype

Set polyline linetype.

contrl() Opcode= 15
contrl(2) O
intin(l) Requested linestyle

contrl(3) O
intout(l) Linestyle selected

This operation sets the linetype for subsequent
polyline operations. The total number of
linestyles availableis device dependent;
however, 5 linestyles are required: one solid
plus four dash styles.

If the requested linestyle is out of range, use
linestyle 1 (solid).

STYLE 1 SOLID 1111111111111111
STYLE 2 DASH 1111111000000000
STYLE 3 DOT 1110000011100000
STYLE 4 DASH,DOT 1111111000111000
STYLE 5 LONGDASH 111111111110000

C-36

GSX Programmer’s Guide Set Polyline Line Width

SET POLYLINE Set polyline line width.
LINEWIDTH
Input contrl(l) opcode = 16
contrl(2) Number of input vertices=1
ptsin(l) Reguested line width in device
units
ptsin(2) 0
Output contrl(3) Number of output vertices=1
ptsout(l) Selected line width in device
units
ptsout(2) 0
Description This operation sets the width of lines for

subsequent polyline operations. Any attempt to
set the width beyond the specified maximum will
set it to the maximum line width.

SET POLYLINE Set polyline color index.

COLOR INDEX

Input contri(l) ~ opcode = 17
contrl(2) O

intin(l) Requested color index

Output contrl(3) O
intout(l) Color index selected

Description This operation sets the color index for
subsequent polyline operations. The color
signified by the index is determined by the
SET-COLOR- REPRESENTATION operation. At least
two color indexes are required. Color indexes
range from O to a device-dependent maximum. 1f
the selected index is out of range, use the
MAXIMUM color index.

C-37

GSX Programmer’s Guide Set Polymarker Type

SET POLYMARKER Set polymarker type.

TYPE

Input contrl(l) Opcode = 18
contrl(2) 0

intin(l) Requested polymarker type

Output contrl(3) 0
intout(l) Polymarker type selected

Description This operation sets the marker type for
subsequent polymarker operations. The total
number of markers availableis device-
dependent; however, five marker types are
required, asfollows:

1-. Dot

2-+ Plus

3-* Asterisk

4-0 Circle

5-X Diagonal Cross

If the requested marker typeisout of range,
use type 3. Marker 1 should always be
implemented as the smallest dot that can be

displayed.

C-38

GSX Programmer’s Guide Set Polymarker Scale

SET POLYMARKER Set polymarker scale (height).
SCALE

Input contrl(l) opcode = 19
contrl(2) Number of input vertices= |
ptsin(l) 0
ptsin(2) Requested polymarker height in
device units
Output contrl(3) Number of output vertices = |
ptsout(l) 0
ptsout(2) Polymarker height selected in
device units
Description This operation requests a polymarker height for

subsequent polymarker operations. The driver
returns the actual height selected. if the
selected height does not exist, use asmaller
height.

C-39

GSX Programmer’s Guide

SET POLYMARKER

COLOR INDEX

Input

Output

Description

Set Polymarker Color Index

Set polymarker color index.

contrl(l) Opcode 20
contrl(2) 0
intin(l) Requested polymarker color index

contrl(3) 0
intout(l) Polymarker color index selected

This operation sets the color index for
subsequent polymarker operations. The value of
the index is specified by the COLOR operation.
At least two color indexes are required. If

the index is out of range, use the MAXIMUM
color index.

C-40

GSX Programmer’s Guide Set Text Font

SET TEXT PONT Set the hardware text font.
Input contrl(l) Opcode = 21
contrl(2) 0
intin(l) Requested hardware text font
number
Output
contrl(3) O

intout() Hardware text font selected

Description This operation selects a character font for
subsequent text operations. Fonts are device-
dependent and are specified from | to adevice-
dependent maximum.

C-41

GSX Programmer’ s Guide

SET TEXT
COLOR INDEX

I nput

Output

Description

Set Text Color Index

Set color index.

contrl(l) Opcode = 22

contrl(2) 0

intin(l) Requested text color index
contrl(3) 0

intout(l) Text color index selected

This operation sets the color index for

subsequent text operations. At least two color
indexes are required. Color indexes range from

0 to a device-dependent maximum. If the

selected index is out of range, use the MAXIMUM
index.

C-42

GSX Programmer’s Guide Set Fill Interior Style

SET FILL Set interior fill style.
INTERIOR STYLE

Input contrl(l) opcode = 23
contrl(2) 0
intin(l) Requested fill interior style
0 - Hollow (outline no fill)
1- Salid
2 - Halftone pattern
3 - Hatch
Output contrl(3) 0
intout(l) Fill interior style selected
Description This operation setsthefill interior styleto

be used in subsequent polygon fill operations.
If the requested styleis not available, use
Hollow. The style actually used isreturned to
the calling program.

C-43

GSX Programmer’s Guide

SET FILL STYLE
INDEX

Input

Output

Description

Set Fill Style Index

Set fill styleindex.

contrl(l) Opcode =24

contrl(2) 0

intin(l) Requested fill styleindex for

Pattern or Hatch fill

contrl(3) 0
intout(l) fill styleindex selected for
Pattern or Hatch fill

Select afill style based on thefill interior
style. Thisindex has no effect if the
interior styleiseither Hollow or Solid.
Indexes go from 1 to a device-dependent
maximum. If the requested index is not
available, useindex 1. Theindex referencesa
hatch styleif thefill interior styleis

hatch, or it references a halftone pattern if
theinterior fill styleis halftone pattern.

For consistency, the hatch styles should be
implemented in the following order:

vertical lines
horizonta lines
+45 degree lines
-45 degree lines
Cross

X

>6 device-dependent

OO WN B

Y ou can implement halftone patterns for gray
scale shading with values 1 through 6. Vaue 1
isthe lightest, and 6 is the darkest.

C-44

GSX Programmer’s Guide Set Fill Color Index

SET FILL COLOR Set fill color index.
INDEX
Input contrl(l) Opcode = 25

contrl(2) 0

intin(l) Requested fill color index
Output contrl(3) 0

intout(l) Fill color index selected
Description This operation sets the color index for

subsequent polygon fill operations. The actual

RGB value of the color index is determined by

the SET-COLOR-REPRESENTATION operation. At
least two color indexes arerequired. Color
indexes range from O to a device-dependent
maximum. If the selected index is out of

range, use the MAXIMUM.

C-45

GSX Programmer’s Guide

INQUIRE COLOR
REPRESENTATION

Input

Output

Description

Inquire Color Representation

Return color representation.

contrl(l) Opcode = 26

contrl(2) 0
intin(l) Requested color index
intin(2) Set or redlized flag
0 = set (return color values
requested)

1=redlized (return color
values realized on device)

contrl(3) 0

intout(l) Color index

intout(2) Red intensity (in tenths of
percent 0-1000)

intout(3) Green intensity

intout(4) Blue intensity

This operation returns the requested or the
actual value of the specified color index in
RGB units.

Note: The device driver must maintain tables

of the color values that were set (requested)
and the color values that were realized. On
devices that have a continuous color range, one
of these tables may not be necessary. If the
selected index is out of range, use the values
for the MAXIMUM color index.

C-46

GSX Programmer’s Guide Inquire Cell Array

INQUIRE CELL Return cell array definition.
Input contrl(l) opcode = 27
contrl(2) 2
contrl(4) Length of color index array
contrl (6) Length of each row in color
index array
contrl(7) Number of rowsin color index
array
ptsin(l) x-coordinate of lower 1eft
corner in device units
ptsin(2) y-coordinate of lower left
corner in device units
ptsin(3) x-coordinate of upper right
corner in device units
ptsin(4) y-coordinate of upper right
corner in device units
Output contrl(3) 0
contrl(8) Number of elements used in each
row of color index array
contrl(9) Number of rows used in color
index array

contrl(10) Invalid value flag

0 If noerrors

1 If acolor value could
not be determined for
some pixel

intout Color index array (stored one
row at time)

-1 Indicatesthat a color
index could not be
determined for that
particular pixel

Description This operation returns the cell array def inition
of the specif ied cell. Color indexes are
returned one row at atime, starting from the
top of the rectangular area, proceeding
downward.

c-47

GSX Programmer’s Guide

INPUT LOCATOR
For REQUEST MODE

Input

Output

Input Locator

Return locator position.

contrl(l)
contrl(2)
intin(l)

ptsin(l)

ptsin(2)

contrl(3)
contrl(5)

intout(l)

Opcode = 28
Number of input vertices=1
Locator device number

1 = keyboard
2 = mouse, joystick

Initial x-coordinate of |ocator
in device units

Initial y-coordinate of locator
in device units

Number of output vertices=1
Length of intout array -- status

0 = request unsuccessful
>0 = request successful

Locator terminator

For keyboard terminated |ocator
input, thisisthe ASCII
character code of the key
struck to terminate input. For
input that is not keyboard-
terminated (such asfrom a
tablet or mouse) , valid locator
terminators begin with <space>
(ASCII 32) and increase from
there. For instance, if the
puck on atablet has 4 buttons,
the first button should

generate a <space> as a
terminator, the second a <!>
(ASCII 33) , the third a<">
(ASCII 34) , and the fourth a
<#> (ASCII 35).

C-48

GSX Programmer’s Guide Input L ocator

ptsout(l) Final x-coordinate of locator in
device units
ptsout(2) Final y-coordinate of locator in
device units
Description for This operation returns the position in Device
Request Mode Coordinates of the specified locator device.

Upon entry to the locator routine, a GRAPHIC
cursor is placed at the initial coordinate.

The GRAPHIC cursor is tracked with the input
device until aterminating even occurs, which
can result from the user pressing akey, or a
button on amouse. The cursor is removed when
the terminating event occurs.

For SAMPLE MODE
Input contrl(l) Opcode @ 28
contrl(2) Number of input vertices= |
intin(l) Locator device number
1 = keyboard
2 = mouse, joystick
Output Table C-1. Sample Mode Status Returned
Event Control Array
3 ©
Coordinates Change 1 0
Key Pressed;
Coordinates Not Changed 0O 1
No Input 0 1
Output contrl(3) Number of output vertices

1 = coordinate changed
0 = no coordinate changed

C-49

GSX Programmer’s Guide input Locator
contrl(5) Length of intout array

0 = no terminating character
1 = terminating character
returned

intout(l) Locator terminatorif
terminating event occurs. For
keyboard terminated |locator
input, thisisthe ASCII
character code of the key
struck to terminate input in
the low byte and O in the high
byte. For input that is not
keyboard-terminated (such as
from atablet or mouse), valid
locator terminators begin with
20 hex (ASCII 32) and increase

from there.
ptsout Returned if coordinate changed
ptsout(l) New x-coordinate of locator in
device units
ptsout(2) New y-coordinate of locator in
device units
Description for Upon entry to the locator routine, NO cursor
Sample Mode isdisplayed. inputissampled. if the

coordinate changed, itisreturned and
contrl(3) is set to 1. Contrl(5) isset to 0.

If aterminating event occurs, a character is
returned and contrl(5) is set to 1. Contrl(3)
issetto 0. if nothing happens, neither a
character nor coordinate is returned.

C-50

GSX Programmeris Guide

INPUT VALUATOR
For REQUEST MODE

I nput

Output

Description for
Request Mode

Input Valuator

Return value of valuator device.

contrl(l) opcode = 29

contrl(2) 0

intin(2) Initial value

contrl(3) 0

contrl(5) 1 length of intout array
intout(l) Output value

intout(2) Terminator

The terminating character is
returned as an ASCII character
for keyboard input with the
high byte set to 0.

This operation returns the current value of

the valuator device. Theinitial value of the
valuator isincremented or decremented
(typically with the Up Arrow and Down Arrow
keys) until aterminating character is struck.

Typical implementation of the Up Arrow and Down
Arrow keysisasfollows:

Pressing the Up Arrow key adds 10 to the
valuator.

0 Pressing the Down Arrow key subtracts 10 from
the valuator.

However, when the Up and Down arrow keys are
pressed with the Shift key, the following
OCCUrS:

Up Arrow key adds | to the valuator.
Down Arrow key subtracts 1 from the valuator.

C-51

GSX Programmer’s Guide
For SAMPLE MODE

I nput

Output

Description for
Sample Mode

contrl(l)
contrl(2)

contrl(3)
contrl(5)

intout(l)
intout(2)

Input Vauator
opcode = 29

0

0

Length of intout array
status

0 = nothing happened
1 = valuator changed
2 = terminating character

New valuator value
Terminator if terminating event
occurred

This operation returns the current value of

the valuator device. The valuator deviceis
sampled. If the valuator changed, the valuator
valueisincremented or decremented as
required. If aterminating event occurred, the
valueisreturned. If nothing happens, no
valueis returned.

C-52

GSX Programmer’s Guide
INPUT CHOICE
For REQUEST MODE

I nput

Output

Description for
Request Mode

For SAMPLE MODE

I nput

Output

Input Choice

Return choice device status keys.

contrl(l) opcode = 30
contrl(2) 0
intin(l) Choi ce device number

1 = function keys
>1 = workstation-dependent

contrl(3) 0
contrl(5) 1
intout(l) Choice number (range of valid

numbers beginning at 1 to
workstati on-dependent maximum)

This operation returns the choice from the
selected choice device. Upon entry to the
routine, the keys are sampled until avalid
choice key ispressed. This choiceisreturned.
The range for choice numbers begins at 1; its
maximum value is device-dependent. Input
Choiceistypically implemented as function

keys.

contrl(l) opcode = 30
contrl(2) 0
intin(l) Choi ce device number

1 = function keys
>1 = workstation-dependent

contrl(3) 0
contrl(5) Choice status

0 = nothing happened
1 = sample successful
2 = nonchoice key

C-53

GSX Programmer’s Guide Input Choice
intout(l) Choicenumber if sample
successful
intout(2) Choice terminator if terminating
event occurs

Description for
Sample Mode

This operation returns the choice status of
the selected choice device. Upon entry to the
routine, input issampled. If inputis
avallableand itisavalid choicekey, itis
returned. If input isavailable but it is not
f romachoicekey, itisreturnedasa
terminating event. The range of choice numbers
beginsat 1; its maximum valueis device-
dependent.

C-54

GSX Programmer 's Guide Input String

INPUT STRING Return string from specified string device.

For REQUEST MODE

Input contrl(l) Opcode = 31

contrl(2) 0 if nonecho mode
1if echo mode

intin(l) String device number
1 = default string device
(keyboard)

intin(2) Maximum string length

intin(3) Echo mode

0 = do not echo input
characters
1 = echo input characters

ptsin(l) x coordinate of echo areain
echo mode
ptsin(2) y coordinate of echo areain
echo mode
Output contrl(3) 0
contrl(5) 1

0 = request unsuccessful
>0 = request successful

intout Output string
Description for This operation returns a string from the
Request Mode specified device. Upon entry input is

accumulated until acarriage returnis
encountered or the intout array isfull. if

echo mode is enabled, text should be echoed to
the screen with the current text attributes:
color, height, character up vector, and font.

C-55

GSX Programmer’s Guide Input String

For SAMPLE MODE
Input contrl(l) Opcode = 31
contrl(2) 0
intin(l) String device number
1 = default string device
(keyboard)
intin(2) Maximum string length
Output contrl(3) 0
contrl(5) Length of output string
0 = sample unsuccessful
(characters not available)
>0 = sample successful
(characters available)
intout Output string if sample
successful
Description for This operation returns a string from the
Sample Mode specified device. Upon entry to the routine,

input issampled. If dataisavailable, itis
accumulated. Input issample again. Inputis
accumulated until one of the following
OCCurs:

o0 Input is accumulated until it is no longer
available

0 A carriage return is encountered.
o Theintout buffer isfull.

Note that sample mode returns immediately as
soon as no input is available.

C-56

GSX Programmer’ s Guide

SET WRITING MODE

I nput

Output

Description

Set Writing Mode

Set writing mode

contrl(l) Opcode = 32

contrl(2) 0
intin(l) Writing mode
1 =replace

2 = transparent
3 = XOR (complement)

4 = erase
contrl(3) 0
intout Writing mode selected

This operation affects the way pixelsfrom
lines, filled areas, and text are placed on the

display.

The following are descriptions of the four
writing modes used by the GSX:

0 MASK istheline style mask.

0 FORE isthe selected color after mapping from
GSX.

0 BACK isthe color 0 after mapping from GSX
(default is black).

0 OLD isthe current PIXEL color value.

0 NEW isthe replacement color value.

C-57

GSX Programmer’ s Guide

REPLACE MODE

Boolean
Expression

TRANSPARENT
MODE

Boolean
Expression

XOR MODE
Boolean

Expression

ERASE MODE

Boolean
Expression

Set Writing Mode

Replace mode isinsensitive to the currently
displayed image. Any information already displayed
iscompletely replaced. The mask refersto theline
style or fill pattern.

NEW = (FORE and MASK) or (BACK and not MASK)

Transparent mode only affects the pixels where the

mask is one and these are changed to the FORE value.

NEW = (FORE and MASK) or (OLD and not MASK)

XOR mode reverses the bits representing the color.

NEW = (FORE and MASK) XOR OLD

Erase mode sets the display to the currently selected
background color where the mask value is one,
independent of the foreground color.

(NEW = BACK and MASK) or (OLD and not MASK)

C-58

GSX Programmer’s Guide

SET INPUT NODE

I nput

Output

Description

Set Input Mode

Set input mode.

contrl(l) Opcode = 33

contrl(2) 0
intin(l) Logical input device
1 = locator
2 = valuator
3 =choice
4 = string
intin(2) Input mode
1 = request
2=sample
contrl(3) 0
intout(l) Input mode selected

This operation sets the input mode for the
specified logical input device (locator,
valuator, choice, string) to either request or
sample. Inrequest mode, the driver waits
until an input event occurs before returning.
In sample mode, the driver returns the current
status or location of the input device without
waiting.

C-59

GSX Programmer’s Guide Required Opcode CRT Devices

REQUIRED OPCODE The following opcodes and subfunctions are
FOR CRT DEVICES required for CRT devices:

Table C-2. Opcode for CRT Devices
Opcode Description

Open workstation
Close workstation
Clear workstation
Update workstation
Escape

U"_bwl\.)l—‘

Id Definition
1 Inquire addressable
character cells
2 Exit graphics mode
3 Enter graphics mode
4 Cursor up
5 Cursor down
6 Cursor right
7 Cursor left
8 Home cursor
9 Eraseto end of screen
10 Erasetoend of line
11 Direct cursor address
12 Output cursor
addressabl e text
15 Inquire current cursor
address
18 Place graphic cursor
19 Remove graphic cursor

6 Polyline

7 Polymarker
8 Text

9 Filled area
10 Cdl array

C-60

GSX Programmer’s Guide

REQUIRED OPCODE
FOR PLOTTERS AND

PRINTERS

Table C-2.

Required Opcode CRT Devices

(continued)

Opcode Description

11

12
14
15
17
18
20
22
25
26
33

Graphic Drawing Primitive (GDP)
Id Definition

1 Bar Fill
Set character height
Set color representation
Set polyline linetype,
Set polyline color index
Set polymarker type
Set polymarker color index
Set text color index
Set fill color index
Inquire color representation
Set input mode (required only if
input locator, input valuator,
input choice, or input string is
present)

The following opcodes and subfunctions are
required for plotters and printers:

Table C-2. Opcode for CRT Devices

Opcode Definition

a b~ wdNBEF

Open workstation
Close workstation
Clear workstation
update workstation
Escape

Id Definition

1

Inquire addressable
character cells

C-61

GSX Programmer’s Guide Opcode for Plotters and Printers

Table C-2. (continued)

Opcode Description

6 Polyline

7 Polymarker

8 Text

9 Filled area

10 Cell array

11 Graphic Drawing Primitive (GDP)
Id Definition
1 Bar Fill

12 Set character height

14 Set color representation

15 Set polyline linetype

17 Set polyline color index

18 Set polymarker type

20 Set polymarker color index

22 Set text color index

25 Setfill color index

26 Inquire color representation

33 Setinput mode (required only if
input locator, input valuator,
input choice, or input string
IS present)

Determining if an opcode that is not required

isavailable in aparticular driver can be done

in acouple of ways. one way isto check the

information about available features returned

from the OPEN WORKSTATION opcode. Ancther way
isto check the selected value returned from an

opcode against the requested value. If the two

values do not match, then either the opcode was

not available or the requested value was not

available, and a best fit value was selected.

End of Appendix C

C-62

Glossary

assignment table

BDOS

coordinate scaling

default device
driver

devicedriver

DR Draw

DR Graph

function code

Associates logical device numbers, called
workstation I1Ds, with specific GIOS files so

that devices can be referred to by number

within the application program. The Assignment
Tableresidesin atext file called ASSIGN.SY S
and can be modified using any text editor.

Basic Disk Operating System for the CP/M family
of operating systems. It contains the device-
independent portion of the file system. The
device-dependent interface of CP/M isthe BIOS
(Basic 1/0O System) module.

Transforms points from one space to another. In
GSX dll point coordinates must be specif ied in
Normalized Device Coordinates with values
between 0 and 32,767. GDOS then scales these
coordinates into values appropriate for your
graphics device.

Largest driver loaded during a graphics
session. It isawaysthefirst driver named in
the Assignment Table.

GIOSfile that translates standard device-
independent graphics operations to graphics

specific command sequences for a particular
device. Devicedriversfor graphics devices

are contained in the GIOS (Graphics 1/0 System)
portion of GSX.

Application program that provides an advanced
capability to create complex graphics.

Application program that allows you to graph and
plot data by making simple menu selections.

Number that indicates to the operating system
the function that is being requested when a
service call ismade.

Glossary-I

GSX Programmer’s Guide

GDOS

Generalized
Drawing
Primitive (GDP)
GIN

GIOS

GKS

graphics mode

GSX

Graphical Kernel
System (GKYS)

graphics
primitives

NDC

Glossary

Graphics Device Operating System, or GDOS, is
the device-independent portion of GSX. it
services graphics requests and callsGIOS to
send commands to graphics devices.

A display function used to address special
device capabilities such as curve drawing.

Graphics Input mode

Graphics Input Output System, or GIOS, isthe
device-dependent portion of GSX. GIOSfiles
aretheindividua device driverswhich

trangl ate between a particular device and the
standard VDI conventions.

Graphical Kernel System

Entered by executing the GSX command from the
operating system’s user interface module. This
enables al graphics functions.

Graphics System Extension, or GSX, isthe
graphics extension to the 8080 and 8086 family
of microcomputer operating systems.

An international standard for the
programming interface to graphics from an
application program.

Basic graphics operations performed by GSX.
for example, drawing lines, markers, and text
strings.

Normalized Device Coordinates

Glossary-2

GSX Programmer’s Guide Glossary

normalized Uniform virtua space by which agraphics
device coordinate application program passes graphics
space information to a device. GDOS trangdlates

between NDC space and the Display Coordinates
(DC) of aparticular device.

normalized Virtual space in which all point coordinates

device coordinates are mapped to values between 0 and 32,767. NDC
space serves as a common interface between
graphics devices.

operation codes Passed to GDOS as part of a parameter list;
indicates which graphics operation is
requested.
VDI Virtual Device Interface
virtual device Standard interface between device-dependent
interface and device-independent code in a graphics

environment. VDI makesall devicedrivers
appear identical to the calling program. GSX
isbased on VDI, and all device drivers written
for GSX must conform to the VDI specification.

workstation Graphics device with one display surface and
zero or more input devices.

workstation Logical unit number that specifieswhich
identification graphics deviceis currently active. Each
number (1D) device driver has an associated workstation ID

which is specified in an Assgnment Tablein
file ASSIGN.SYS.

End of Glossary

Glossary-3

Index

A

arc, 8-30
architecture, 2-1

ar

ray elements, 4-2

aspect ratio, 4-3

A

SSIGN.SYSS, 4-4

assignment table, 3-7
assignment table format, 3-7

B

BAR, 8-30

c

cell array, 8-27

ci

rcle, 8-31

coordinate scaling, 2-2

D

devicedrivers, 1-4
dynamic loading, 3-1

E

error messages, 7-5
escape function

arc, 3-6

bar, 3-6

circle, 3-6

cursor down, 3-6

cursor left, 3-6

cursor right, 3-6

cursor up, 3-6

direct cursor address, 3-6
enter graphicx mode, 3-3
erase to end of screen, 3-6

place cursor at location,
3-6

print graphic characters,
3-6

remove cursor, 3-6

reserved, 3-6

reverse video on, 3-6

reverse video off, 3-6

unused, 3-6

cursor down, 8-10, 8-14
cursor left, 8-10, 8-15
cursor right, B-10, 8-15
cursor up, 8-10, 8-14
direct cursor address, 8-10,
8-17
enter graphics mode, 8-10,
B-13
erase to end of line, 8-10,
8-17
erase to end of screen,
8-10, 8-16
exit graphics mode, 8-10,
B-13
hardcopy, B-10
home cursor, 8-10, 8-16
inquire addressable
character cells, 8-10,
8-12
inquire current cursor
address, 8-10, 8-20
inquire tablet status, 8-10,
8-20
output cursor addressable
text, 8-10, 8-18
place graphic cursor at
location, 8-10, 8-21
remove last graphic cursor,
8-10, 8-22

Index-1

erase to end of ling, 3-6
exit graphics mode, 3-6
hardcopy, 3-6
home cursor, 3-6
inquire addressable
character cells, 3-3
Inquire current cursor
address, 3-6

inquire tablet status, 3-6
output cursor addressable

text, 3-6
piedlice, 3-6
G

GDOS, 2-1
calling sequence, 3-2
functions, 3-1
generalized drawing primitive,
8-28
GIOS, 2-2
file
naming, 4-4
graphics
primitives, 2-3
requests, 1-4
GSX, 2-1

H

hard copy, 8-21

I
Input
choice, 8-53
locator, 8-48
string, 8-55
valuator, 8-51
inquire
cell array, 8-47
color representation, B-46
invoking device drivers, 7-3

reverse video off, 8-10,
8-19
reverse video on, 8-10, 8-19

filled area, 8-26
functions, 1-2

generalized drawing
primitive, 3-6

input choice, 3-6

input locator, 3-6

input string, 3-6

input valuator, 3-6

inquire cell array, 3-6

inquire color
representation, 3-6

open workstation, 3-3, 8-4

polyline, 3-6

polymarker, 3-6

set character height, 3-6

set character up vector, 3-6

set color representation,
3-6

set fill color index, 3-6

set fill interior style, 3-6

st fill styleindex, 3-6

set input mode, 3-6

set polyline color index,
3-6

set polyline linetype, 3-6

set polyline linewidth, 3-6

set polymarker type, 3-6

set polymarker scale, 3-6

set polymarker color index,
3-6

Set text color index, 3-6

set text font, 3-6

set writing mode, 3-6

Index-2

L
loading GIOSfiles, 3-6
M

memory management, 3-8
memory requirements, 5-2

N

normalized coordinate space,
2-2

Normalized Device Coordinates
NDC, 3-2

0

operation code

cell array, 3-6
close workstation, 3-3, 8-9
escape, B-10
filled text, 3-6
fill interior style, 8-42
fill styleindex, 8-43
input mode, 8-59
polyline color index, 8-37
polyline line width, 8-37
polyline linetype, B-36
polymarker color index, B-40
polymarker scale, B-38
polymarker type, 8-38
text color index, 8-42
text font, 8-41
writing mode, 8-57

stack requirements, 5-2

T
text, B-24
transforming points, 3-2

V
Virtual Device Interface VDI,
3-2,4-2

text, 3-6
update workstation, 8-10

P

piedlice, 8-30

plotters and printers, 8-61
polyline, 8-23

polymarker, 8-24

print graphic characters, 8-31

R

required opcode CRT Devices,
8-60

S

scaling factor, 4-3
set
character height, 8-33
character up vector, 8-34
color representation, 8-35
fill color index, 8-45

Index-3

