
All Information Presented here is Proprietary to Digital Research

MP/M II
Operating System

PROGRAMMER'S GUIDE

Copyright © 1981

Digital Research
P.O. Box 579

801 Lighthouse Avenue
Pacific Grove, CA 93950

(408) 649-3896
TWX 910 360 5001

All Rights Reserved

All Information Presented here is Proprietary to Digital Research

II

COPYRIGHT

Copyright 1981 by Digital Research. All rights
reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or
computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written
permission of Digital Research, Post Office Box 579,
Pacific Grove, California, 93950.

However, this manual is tutorial in nature.
Thus, the reader is granted permission to include
the example programs, either in whole or in part, in
his own programs.

DISCLAIMER

Digital Research makes no representations or
warranties with respect to the contents hereof and
specifically disclaims any implied warranties of
merchantability or fitness for any particular
purpose. Further, Digital Research reserves the
right to revise this publication and to make changes
from time to time in the content hereof without
obligation of Digital Research to notify any person
of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research.
CP/NET, MP/M, and MP/M II are trademarks of Digital
Research.

The "MP/M II Programmer's Guide" was prepared using
the Digital Research TEX Text Formatter and printed
in the United States of America by Commercial Press
of Monterey.

* First Edition: August 1981 *
* Second Edition: August 1982 *

All Information Presented here is Proprietary to Digital Research

III

Foreword

MP/M II T.M., is a multi-user operating system for microcomputers
that use the Intel 8080, the Zilog Z800, or similar 8-bit type
architecture. It will support multi-terminal access with multi
programming at each terminal. It uses the same Basic Disk Operating
System (BDOS) as CP/M@ thus assuring compatibilty of existing
programs running under CP/M.

The minimum hardware environment for MP/M II must include an
8080 or Z80 processor, 32K bytes of random access memory (RAM),a
system console, and a real-time clock. A typical MP/M II kernel
occupies approximately 15K bytes.

This manual describes the programming interface to MP/M II. It
gives a general description of the modules that comprise the
operating system, the manner in which MP/M II manages the memory
resource and monitors running processes, as well as detailed
descriptions of all the system entry points. Also included are
descriptions of several utility programs that are useful for
creating and debugging programs under MP/M II. This manual is not
intended as a tutorial. Therefore, familiarity with the material
covered in the User's Guide and with processor architecture and
assembly language in general is required.

All Information Presented here is Proprietary to Digital Research

IV

All Information Presented here is Proprietary to Digital Research

V

Table of Contents

1 Introduction to MP/M II

1.1 Overview of MP/M II Features 1

1.2 MP/M II Nucleus 4

1.2.1 Process Dispatching 4
1.2.2 Queue Management 6
1.2.3 Flag Management 7
1.2.4 Device Polling 8
1.2.5 Console and List Device Management 8
1.2.6 Memory Management 9
1.2.7 System Timing Functions 10

1.3 MP/M II Memory Structure 11

1.4 Terminal Message Process 14

1.5 Command Line Interpreter 15

1.6 Transient Programs 18

1.7 Resident System Processes . .

1.8 BDOS and XDOS Calling Conventions

2 The BDOS Interface

2.1 BDOS Console and List I/O Interface 23

2.2 BDOS File System 24

2.2.1 File Naming Conventions 26
2.2.2 Disk Drive and File Organization 28
2.2.3 File Control Block Definition 29
2.2.4 User Number Conventions 33
2.2.5 Directory Labels and XFCBs 34
2.2.6 File Passwords 36
2.2.7 File Date and Time Stamps 37
2.2.8 File Open Modes 38
2.2.9 File Security 39
2.2.10 Concurrent File Access 41
2.2.11 Multi-Sector I/O : 43
2.2.12 XIOS Blocking and Deblocking 43
2.2.13 Reset, Access and Free Drive 44
2.2.14 BDOS Error Handling 47

All Information Presented here is Proprietary to Digital Research

VI

Table of Contents
(continued)

2.3 Base Page Initialization 53

2.4 BDOS Function Calls 57

3 XDOS Interface

3.1 Introduction . 111

3.2 Process Descriptor Data Structure 111

3.3 Queue Data Structures 116

3.3.1 Circular Queues 116
3.3.2 Linked Queues 118
3.3.3 User Queue Control Block 120
3.3.4 Queue Naming Conventions 121

3.4 Memory Descriptor Data Structure 121

3.5 System Data Page 122

3.6 XDOS Internal Data Segment 124

3.7 XDOS Error Handling 125

3.8 XDOS Function Calls 126

4 ASM

4.1 Overview

4.2 Program Format

4.3 Forming the Operand 154

4.3.1 Labels . 154
4.3.2 Numeric Constants 154
4.3.3 Reserved Words 155
4.3.4 String Constants 156
4.3.5 Arithmetic and Logical Operators 157
4.3.6 Precedence of Operators 158

4.4 Assembler Directives 159

4.4.1 The ORG Directive 160
4.4.2 The END Directive 160
4.4.3 The EQU Directive 161

All Information Presented here is Proprietary to Digital Research

VII

Table of Contents
(continued)

4.4.4 The SET Directive 161
4.4.5 The IF and ENDIF Directives 162
4.4.6 The DB Directive 163
4.4.7 The DW Directive 163
4.4.8 The DS Directive 164

4.5 Operation Codes 164

4.6 Error Messages 171

5 RDT

5.1 RDT Overview

5.2 Invoking RDT 173

5.3 RDT Command Conventions 174

5.4 Terminating RDT 175

5.5 RDT Commands 175

5.5.1 The A (Assemble) Command 175
5.5.2 The B (Bitmap Bit Set/Reset) CommLnd 175
5.5.3 The D (Display) Command 176
5.5.4 The F (Fill) Command 176
5.5.5 The G (Go) Command 177
5.5.6 The I (Input File) Command 177
5.5.7 The L (List) Command 178
5.5.8 The M (Move) Command 178
5.5.9 The N (Normalize) Command 178
5.5.10 The R (Read) Command 179
5.5.11 The S (Set) Command 179
5.5.12 The T (Trace) Command 180
5.5.13 The U (Untrace) Command 181
5.5.14 The V (Value) Command 181
5.5.15 The W (Write) Command. 181
5.5.16 The X (Examine CPU State) Command 182

All Information Presented here is Proprietary to Digital Research

VIII

Table of Contents
(continued)

6 Other Programming Utilities

6.1 GENHEX. 183
6.2 GENMOD. 183
6.3 PRLCOM. 184
6.4 DUMP. 184
6.5 LOAD. 185

7 PRL File Generation
7.1 PRL Format . 187
7.2 Generating a PRL 187

8 RSP Generation

8.1 RSPs and Resident System Procedures 191

8.2 Generating an RSP 191

8.3 RSP Code . 191

8.4 Banked RSPs . 192

9 SPR Generation

9.1 System Page Relocatable Files 193

9.2 Generating an SPR 193

All Information Presented here is Proprietary to Digital Research

IX

Appendixes

A Flag Assignments . 195

B Process Priority Assignments 197

C BDOS Function Summary 199

D XDOS Function Summary 201

E Sample Page Relocatable Program 203

F Sample Resident System Process 209

G Acronyms and Conventions 213

H Glossary . 215

I ASCII and Hexadecimal Conversions 219

All Information Presented here is Proprietary to Digital Research

X

All Information Presented here is Proprietary to Digital Research

Section I
Introduction to MP/M 11

1.1 Overview of MP/M II Features

MP/M II is a microcomputer operating system that supports
multiple terminals with multi-programming at each terminal. Upward
compatible with CP/M, MP/M II presents a CP/M interface to each
terminal. In fact, most CP/M programs can run without modification
under MP/M II. However, MP/M II is not limited to this model.
Using MP/M II's powerful multi-programming capability, a single
terminal can initiate more than one program. In addition, the
system functions used by MP/M II to control the multi-programming
environment are available to application programs. As a result,
MP/M II supports extended features beyond the CP/M model such as
communication between and synchronization of independently running
programs.

Under MP/M II, there is an important distinction between a
program and a process. A program is simply a block of code residing
somewhere in memory or on disk; it is essentially static. A process
on the other hand, is dynamic, and can be thought of as a "logical
machine" that not only executes the program's code, but also
executes code in the operating system. When MP/M II loads a
program, it also creates a process that is associated with the
loaded program. Subsequently, it is the process, rather than the
program that controls all access to the system's resources. Thus,
MP/M II monitors the process, not the program. This distinction is
a subtle one, but vital to understanding the operation of the system
as a whole.

Programs running under MP/M II fall into three categories:
CP/M programs, MP/M II system processes, and MP/M II Resident System
Processes. The first category consists of CP/M-like programs that
MP/M II loads into an available memory segment. MP/M II supports
from 1 to 7 memory segments or partitions that can be loaded with
programs. once loaded and initiated, a program becomes associated
with a process that is maintained by the MP/M II real-time nucleus.

The second category consists of MP/M II system processes that
perform operating system tasks. For example, the Command Line
Interpreter (CLI), is the system process that loads and initiates
user programs.

The final category consists of those processes that can be
optionally integrated into MP/M II during system generation, thus
becoming a part of the system. These processes are called Resident
System Processes (RSPS) . With RSPs, users can write custom
processes and include them in the system along with those supplied
with MP/M II (see Section 1.7 and Section 8) . All processes running
under MP/M II compete for the CPU and other system resources on a
priority basis under control of the real-time nucleus.

All Information Presented here is Proprietary to Digital Research

2

MP/M II Programmer's Guide 1.1 Overview of MP/M II Features

The following list briefly summarizes MP/M II's capabilities.

• Multi-terminal support. MP/M II supports up to 16
terminals. Also, a single process can access multiple
terminals.

• Multi-programming at each terminal. Any system console can
initiate multiple programs or processes. In addition, a
process can generate sub-processes.

• Support for bank-switched memory. MP/M II's memory
segments can either reside in common memory or be
distributed through separate memory banks, thereby
extending the system's effective memory capacity.

• Inter-process communication, synchronization, and mutual
exclusion. These functions are provided by queues.

• Logical interrupt mechanism using flags. This allows MP/M
II to interface with any physical interrupt structure.

• System timing functions. These functions enable processes
running under MP/M II to compute elapsed times, delay
execution for specified intervals, and to access and set
the current date and time. In addition, the user can
schedule programs to be run by date and time. The system
timing is also used to provide round-robin scheduling of
compute-bound processes executing at the same priority.

• User-selected options at system generation time. The
available options include the number of system consoles,
the number, size, and location of memory segments, and the
maximum number of files and locked records supported by the
system at one time. Also, the user can select which RSPs
to include with MP/M II during system generation.

Functionally, MP/M II is composed of three distinct modules:
the Basic Disk Operating System (BDOS) , the Extended Disk Operating
System (XDOS) , and the Extended I/O System (XIOS) . The MP/M II BDOS
is an upward-compatible version of the single-user CP/M BDOS. In
most cases, CP/M programs that make BDOS calls for I/O or direct
BIOS calls for printer and console I/O, can run under MP/M II
without modification. However, MP/M II's BDOS is extended to
provide support for multiple console and list devices. In addition,
the file system is extended to provide services required in multi
user environments.

All Information Presented here is Proprietary to Digital Research

3

MP/M II Programmer's Guide 1.1 Overview of MP/M II Features

Two major extensions to the file system are:

• File locking. Normally, files opened under MP/M II cannot
be opened or deleted by other users. This feature prevents
accidental conflicts with other users.

• Shared access to files. As a special option, independent
users can open the same file in shared or unlocked mode.
MP/M II supports record locking and unlocking commands for
files opened in this mode, and protects files opened in
shared mode from deletion by other users.

The XDOS module gives MP/M II its multi-programming
capabilities. It contains the real-time nucleus that monitors the
execution of processes and arbitrates conflicts for the system's
resources. It also includes the Terminal message Process (TMP)
which reads and echoes command lines for the system consoles, and
the Command Line Interpreter (CLI) which accepts TMP command lines
and initiates user programs and RSPs. The XDOS also contains the
set of extended MP/M II functions that can be accessed by user
programs.

The XIOS module is similar to the CP/M BIOS module but is
extended in several ways. Primitive functions such as console I/O
are modified to support multiple consoles. Several new primitive
functions support MP/M II's additional features. Also, new
facilities are added to eliminate wait loops. The XIOS is the
hardware-dependent module that defines MP/M II's interface to a
particular hardware environment. Although a standard XIOS is
supplied by Digital Research, the XIOS is usually customized to
support the user's own hardware environment. Note: processes
running under MP/M II can make direct XIOS calls only for console
and list I/O.

When MP/M II is configured for a single console and is
executing a single program, its speed approximates that of CP/M.
The overhead of the MP/M II dispatcher in such an environment will
be 7 to 15%. In environments where either multiple processes and/or
users are running, the speed of each individual process is degraded
in proportion to the amount of I/O and compute resources required.
A process that performs a large amount of I/O in proportion to
computing exhibits only minor speed degradation. This also applies
to a process that performs a large amount of computing, but is
running concurrently with other processes that are largely I/O
bound. on the other hand, significant speed degradation occurs in
those environments where more than one compute-bound process is
running.

All Information Presented here is Proprietary to Digital Research

4

MP/M II Programmer's Guide 1.2 MP/M II Nucleus

1.2 MP/M II Nucleus

MP/M II is controlled by a real-time multi-tasking nucleus that
resides within the XDOS module. This nucleus performs process
dispatching, memory management, and system timing tasks. It also
performs queue management, flag management, device polling, and
console and list device management. The following sections describe
these functions in greater detail. Many of the system functions
that perform these tasks can also be called by user programs with
the XDOS functions.

Although MP/M II is a multi-processing operating system, at any
given point in time, only one process has access to the CPU
resource. Unless it is specifically written to communicate or
synchronize execution with other processes, it runs unaware that
other processes may be competing for the system's resources.
Eventually, the system suspends the process from execution and gives
another process the opportunity to run.

1.2.1 Process Dispatching

The primary task of the nucleus is transferring the CPU
resource from one process to another. This task is called
dispatching and is performed by a part of the nucleus called the
Dispatcher. Under MP/M II, each process is associated with a data
structure called a Process Descriptor (see Section 3.2) The
Dispatcher uses this data structure to save and restore the current
state of a running process. Every process in the system resides in
one of three states: ready, running, or suspended. A ready process
is one that is waiting for the CPU resource. A suspended process is
one that is waiting for some other system resource or a defined
event. A running process is one that the CPU is currently
executing.

A dispatch operation for a running process can be described as
follows:

 1) The Dispatcher suspends the process from execution and
stores the current state in the Process Descriptor.

 2) The Dispatcher scans all the suspended processes on the
Ready List and selects the one with the highest priority.

 3) The Dispatcher restores the state of the selected process
from its Process Descriptor and gives it the CPU resource.

 4) The process executes until it makes a system call, or an
interrupt, or a tick of the system clock occurs. Then,
dispatching is repeated.

All Information Presented here is Proprietary to Digital Research

5

MP/M II Programmer's Guide 1.2 MP/M II Nucleus

Only processes that are placed on the Ready List are eligible
for selection during dispatch. By definition, a process is on the
Ready List if it is waiting for the CPU resource only. Processes
waiting for other system resources cannot execute until their
resource requirements are satisfied. Under MP/M II, a process is
blocked from execution if it is waiting for:

• a queue message so that it can complete a read queue
 operation.

• space to become available in a queue so it can complete a
 queue write operation.

• system flag to be set.

• console or list device to become available.

• a specified number of system clock ticks before it can be
 removed from the system Delay List.

• an I/O event to complete.

These situations are discussed in more detail in the following
sections.

MP/M II is a priority-driven system. This means that the
Dispatcher selects the highest priority ready process and gives it
the CPU resource. Processes with the same priority are "round
robin" scheduled. That is, they are given equal CPU time slices
when executing CPU bound code. With priority dispatching, control
is never passed to a lower priority process if there is a higher
priority process on the Ready List. Since high priority compute
bound processes tend to monopolize the CPU resource, it is advisable
to lower their priority to avoid degrading overall system
performance. In addition, compute-bound processes can make XDOS
Dispatch calls periodically to promote sharing of the CPU resource
in those systems that do not support a clock. When a process makes
a Dispatch call, the call appears as a null operation to the
process, but allows other processes to gain access to the CPU
resource.

MP/M II requires that at least one process be running at all
times. To ensure this, the system maintains the IDLE process on the
Ready List so it can be dispatched if there are no other processes
available. The IDLE process runs at a very low priority and is
never blocked from execution. It does not perform any useful task,
but simply gives the system a process to run when no other ready
processes exist.

All Information Presented here is Proprietary to Digital Research

6

MP/M II Programmer's Guide 1.2 MP/M II Nucleus

1.2.2 Queue Management

Queues perform several critical functions for processes running
under MP/M II. They are used for communicating messages between
processes, for synchronizing process execution, and for mutual
exclusion. Queues are special data structures, implemented in MP/M
II as "memory files" that contain room for a specified number of
fixed length messages (see Section 3.3). Like files, queues are
made, opened, deleted, read from, and written to with XDOS function
calls. When a queue is created with the XDOS Make Queue command, it
is assigned an 8-character name that identifies the queue in XDOS
Open Queue commands. As the name implies, messages are
read from a queue on a first-in, first-out basis.

A process can read messages from a queue or write messages to a
queue in two ways: conditionally or unconditionally. If no
messages exist in the queue when a conditional read is performed, or
the queue is full when a conditional write is performed, the system
returns an error code to the calling process. On the other hand, if
a process performs an unconditional read from an empty queue, the
system suspends the process from execution until another process
writes a message to the queue. A process suspended in this manner
is placed on the queue's Dequeue list. A similar situation occurs
when a process makes an unconditional write to a full queue. A
process suspended in this way is placed on the queue's Enqueue list.
MP/M II uses these Enqueue/Dequeue lists to synchronize process
execution.

When more than one process resides on a queue's Enqueue or
Dequeue list, preference is given to the higher priority process.
Conflicts involving processes with the same priority are resolved on
a first-come first-serve basis.

Mutual exclusion queues are a special type of queue under MP/M
II. They contain one message of zero length and are assigned a name
beginning with the upper-case letters, MX. In effect, a mutual
exclusion queue is a binary semaphore. Mutual exclusion queues
ensure that only one process has access to a resource at a time.
Access to a resource protected by a mutual exclusion queue takes
place as follows:

 1) The process issues an unconditional Read Queue call from the
queue protecting the resource, thereby suspending itself
until the message is available.

 2) The process accesses the protected resource.

 3) The process writes the message back to the queue when it has
finished using the protected resource, thus freeing the
resource for other processes.

As an example, the disk system mutual exclusion queue, MXdisk,
ensures that processes serially access the BDOS file system.

All Information Presented here is Proprietary to Digital Research

7

MP/M II Programmer's Guide 1.2 MP/M II Nucleus

Mutual exclusion queues have one other feature that is
different from normal queues. When a process reads a message from a
mutual exclusion queue, the nucleus saves the address of the Process
Descriptor for the process reading the message in a two-byte buffer
area of the queue. If the process is aborted while it owns the
mutual exclusion message, the nucleus automatically writes the
message back to the queue for the aborted process, thus enabling
other processes to gain access to the protected resource.

1.2.3 Flag Management

MP/M II's nucleus uses flags for signaling and synchronizing
processes with defined events. Processes access the system's flags
with the XDOS functions, Flag Set and Flag Wait. Internally, a flag
can reside in two states: set or reset. The reset state is further
divided into two categories:

• No process is waiting for the flag to be set.

• A process is waiting for the flag to be set, and blocked
 from execution until it is set.

Note: Two processes are not allowed to wait on the same flag. This
is an error situation referred to as flag "under-run". Similarly, a
process attempting to set a flag that is already set is another
error situation, called flag "over-run".

Flags provide a logical interrupt system independent of the
physical interrupt system of the microcomputer. They are primarily
intended for use by the XIOS module to support the Interrupt
Handler. For example, when the Interrupt Handler receives a
physical interrupt indicating an I/0 operation is complete, it sets
a flag and branches to the Dispatcher. A process suspended from
execution because it is waiting for the flag to be set, is placed on
the Ready List, making it eligible for selection during dispatch.
once dispatched, the process can assume the I/O operation is
complete.

MP/M II supports 32 flags, several of which are reserved. For
example, Flag 1 is reserved for the system clock tick. Because of
their limited number, their use by the XIOS module, and the single
process nature of their design, flags should not be used in
application software except in very special situations. In most
cases, process communication and synchronization are better
accomplished with queues.

All Information Presented here is Proprietary to Digital Research

8

MP/M II Programmer's Guide 1.2 MP/M II Nucleus

1.2.4 Device Polling

Device polling is another mechanism a process can use to wait
for an I/O or external event without using flags or consuming the
CPU resource with a programmed delay loop. Polling is implemented
in the XIOS module exclusively. For example, assuming that the XIOS
supports polled console input, when a process makes a BDOS console
input call, the process eventually reaches the XIOS console input
routine where the actual hardware dependent input operation is
performed. Before performing the input operation, the nucleus tests
to see if a character is ready for input. If it is ready, the
nucleus performs the input operation and execution of the process
continues. If a character is not ready, the process must wait. In
a single-user environment under CP/M, the BIOS can simply loop on
console status until a character is read. Under MP/M II, this
technique cannot be used because it consumes the CPU resource. If
the looping process has a high priority, any other lower-priority
processes on the Ready List are denied the CPU resource.

Device polling avoids this situation because the Dispatcher
makes the console status test. If a character is not ready, the
XIOS makes an XDOS Poll call. This suspends the running process on
the system Poll List. Subsequently, in every dispatch operation,
the Dispatcher makes a single console status call for the process.
When the status call indicates a character is ready, the nucleus
removes the process from the Poll List and places it on the Ready
List. Thus device polling is one of the ways a process can wait for
an external or I/O event to occur without monopolizing the CPU
resource.

1.2.5 Console and List Device Management

Console and List devices are special resources under MP/M II.
When the system gives a console or list device to a process, it
internally stores the address of the Process Descriptor, thereby
recording ownership of the device by that process. If another
process attempts to use the device, the nucleus suspends the calling
process and places it on the device's Wait List. It remains on this
list until the process owning the device either terminates execution
or detaches from the device. When this occurs, the nucleus selects
the highest priority waiting process, gives it the device, places it
on the Ready List, and performs a dispatch.

Processes can own more than one console or list device. Fields
within the Process Descriptor designate which device is to be used
in I/O operations. A process gains ownership of a device by a
mechanism called attaching. If a process attaches a device when the
device is free, the process gains ownership of the device.
otherwise, the process is suspended from execution, as described
above. As an option, a process can conditionally attach to a device
in which case it is notified if another process owns the device.
Conditional attachment gives a process more control over its own
execution instead of leaving it up to the nucleus. Thus a process
can avoid being suspended when it does not depend on a specific
device.

All Information Presented here is Proprietary to Digital Research

9

MP/M II Programmer's Guide 1.2 MP/M II Nucleus

1,2.6 Memory Management

The MP/M II nucleus can manage from one to eight memory
segments. These segments are of fixed length, and used primarily as
regions for loading transient programs. The partitions are page
aligned, which means that they must begin on a page boundary.
Because a page is defined as 256 bytes, a page boundary always
begins at an address where the low-order byte is 0. The nucleus
manages the memory resource with XDOS functions that allocate and
free memory segments. Figure 1-1 illustrates how memory is
organized under MP/M II.

Top of Memory
 +------------+
 : MP/M II :
 (Common) : Operating :
 : System :
 : :
 Top of Banked :------------: +--------+ +--------+

Memory : : :////////: :////////:
 : Segment 0 : :////////: :////////:
 : : :////////: :////////:
 : : :////////: :////////:
 : : :////////: :////////:
 : MP/M II : :////////: :////////:
(Bank Switched) : Extension : :////////: :////////:
 :------------: :////////: :////////:
 :////////////: :////////: :////////:
 :////////////: :////////: :////////:
 :////////////: :////////: :////////:
Low :////////////: :////////: :////////:
Memory :////////////: :////////: :////////:
 :////////////: :////////: :////////:
 +------------+ +--------+ +--------+
 Bank 0 Bank 1 Bank N

Figure 1-1. MP/M II Memory Organization

The shaded areas represent those regions that can support memory
segments. If bank-switched memory is not used, available memory is
restricted to bank zero. The total number of memory segments, in
addition to their size and bank locations, are system generation
options. Segment 0, however, is a special segment reserved for
system modules and RSPs. It always resides immediately below the
operating system region in bank 0.

In bank-switched systems, the operating system module resides
in common memory. In addition, all Process Descriptors and queues
must reside in the common memory region. Typically, the common
memory size is 16K but the size can vary on systems capable of
switching memory in units smaller than 16K. As a result, the

All Information Presented here is Proprietary to Digital Research

10

MP/M II Programmer's Guide 1.2 MP/M II Nucleus

typical maximum memory segment size is 48K. The largest user memory
segment that can be allocated to bank 0 is usually much less than
this value.

More than one memory segment can be defined in a single bank.
Memory segments that do not begin at 0 can only be used to execute
page relocatable (PRL) programs. Memory segments beginning at 0,
can execute COM or PRL programs.

1.2.7 System Timing Functions

MP/M II's system timing functions include: keeping the time of
day, delaying the execution of a process for a specified period of
time, and scheduling programs to be loaded from disk and executed.
The XDOS internal process, CLOCK, provides the time of day for the
system. This process issues Flag Wait calls on the system one
second flag, Flag 2. When the XIOS Interrupt Handler sets this
flag, it wakes up the CLOCK process which then increments the
internal time and date. Subsequently, the CLOCK process makes
another Flag Wait call and suspends itself until the flag is set
again. MP/M II provides functions that allow the user to set and
access the internal date and time. In addition, the BDOS uses the
internal time and date to record when a file is updated, created, or
last accessed.

The XDOS Delay function replaces the typical programmed delay
loop for delaying process execution. The Delay function requires
that a tick be supported in the XIOS and that Flag 1, the system
tick flag, be set every 16 to 20 milliseconds (usually 60 times a
second) . When a process makes a Delay call, it specifies the number
of ticks it is to be suspended from execution. The system maintains
the address of the Process Descriptor for the process on an internal
Delay List along with its current delay tick count. A system
process, TICK, waits on the tick flag and decrements this delay
count on each system tick. When the delay count goes to zero, the
process is removed from the Delay List and placed on the Ready List.

MP/M II can schedule the execution of a transient program or a
Resident System Process only if the Resident System Process, SCHED,
is included at system generation time.

All Information Presented here is Proprietary to Digital Research

11

MP/M II Programmer's Guide 1.3 MP/M II Memory Structure

1.3 MP/M II Memory Structure

The memory structure of the MP/M II operating system is shown
in Figure 1-2.

High +-------------+ < - - +- - +
Memory : SYSTEM.DAT : : :

 +-------------+ : :
 : TMPD.DAT : : :
 +-------------+ : :
 : USERSYS.STK : : :
 +-------------+ : :
 : XIOSJMP.TBL : : :
 +-------------+ : :
 : RESBDOS.SPR : : :--- Common
 +-------------+ : : Memory
 : XDOS.SPR : : :
 +-------------+ : :
 : RSP's : : :
 +-------------+ : :
 : BNKX:OS.SPR : :< - +
 +-------------+ :
 : BNKBDOS.SPR : :--- Memory Segment 0
 +-------------+ : Bank 0
 : BNKXDOS.SPR : :
 +-------------+ :
 : TMP.SPR : :
 +-------------+ :
 : BRS'S : :
 +-------------+ :
 : LCKLSTS.DAT : :

Low +-------------+ :
Memory : CONSOLE.DAT : :

 +-------------+ < - - +

Figure 1-2. MP/M II Memory Structure

The exact memory addresses of each of the memory segments shown
above vary with the MP/M II version and depend on the user
specifications made during the system generation process.

If the host system is bank-switched, the modules above the
BNKXIOS.SPR module must reside in common memory. Common memory is
always accessible no matter what bank is used. The modules below
the BNKXIOS.SPR module must reside in bank 0, which is defined as
the bank of memory active when MP/M II is loaded. The BNKXIOS.SPR
module itself can reside partly in common memory and partly in bank
0. If bank-switching is not used, then all of memory is common.
The memory segments shown in Figure 1-2 are described below.

The SYSTEM.DAT segment contains 256 bytes used by the MP/M II
GENSYS to dynamically configure the system. After loading, the
system uses this area for storage of system data such as submit

All Information Presented here is Proprietary to Digital Research

12

MP/M II Programmer's Guide 1.3 MP/M II Memory Structure

flags. See Section 3.5 for the details of the SYSTEM.DAT segment

The size of the TMPD.DAT segment depends on the number of
consoles specified for the system during the system generation
process. MP/M II supports from 1 to 16 consoles, and associated
with each console is a Terminal Message Processor (TMP) , identified
as TMPO through TMP15. The TMP provides the command line support
for each console. Each console uses 64 bytes within the TMPD.DAT
segment to contain a TMP Process Descriptor. The size of the
USERSYS.STK segment varies according to the number of consoles, as
shown in Table---1-1.

 Table 1-1. TMPD.DAT Segment Size

Size Number of Consoles
OOOH No user system stacks
100H 1 to 4 consoles
200H 5 to 7 consoles

The USERSYS.STK segment is included if the user selects the
option to add system call user stacks during system generation. If
included, the system temporarily uses 64 bytes of stack space in
this segment when user programs make BDOS function calls. This
option allows users to run CP/M *.COM files under MP/M II. Some
BDOS function calls, especially console I/O functions, consume more
stack under MP/M II than CP/M. The system allocates space for user
system stacks from the USERSYS.STK segment for each user memory
segment. The size of the USERSYS.STK segment varies according to
the number of memory segments, as shown in Table 1-2.

Table 1-2. USERSYS.STK Segment Size

Size Number of Memory Segments
OOOH No user system stacks
100H 1 to 4 memory segments
200H 5 to 7 memory segments

The XIOSJMP.TBL segment is a copy of the first page of the
BNKXIOS.SPR module. It is required because the system divides the
BDOS module into two sub-modules, RESBDOS.SPR and BANKBDOS.SPR. The
RESBDOS module accesses the BNKXIOS via the XI.OSJMP.TBL module. The
BANKBDOS module accesses the BNKXIOS module directly. The
XIOSJMP.TBL module is 256 bytes in length.

The RESBDOS.SPR segment contains the resident portion of the
BDOS module. The BDOS functions supported by this segment include
those not involved with the BDOS file system such as console and
list I/O. The RESBDOS.SPR segment is approximately OBOOH bytes in
length.

All Information Presented here is Proprietary to Digital Research

13

MP/M II Programmer’s Guide 1.3 MP/M II Memory Structure

The XDOS.SPR segment contains the MP/M II nucleus and the
extended disk operating system. This segment is approximately 2300H
bytes in length.

RSPs can use two segments within MP/M II. The first segment
resides in common memory, and exists only if one or more RSPs are
included during system generation. This common memory segment RSP
contains all RSP Process Descriptors and queues. The second segment
named the BRS segment exists in the non-common portion of memory
segment 0. It is present only when one or more banked RSPs are
included during system generation (See Section 1.7).

The BNKXIOS.SPR module contains the user-customized Basic and
Extended I/O System in page- relocatable format (PRL) . It can extend
across the common memory boundary. In general, code supporting the
BDOS file system can reside in bank 0 while code supporting console
and list I/O must reside in common memory. Refer to the MP/M II
System Guide for more information regarding the BNKXIOS module.

The BNKBDOS.SPR module contains the non-resident portion of the
BDOS module. All BDOS functions related to the file system are
supported by this segment. This segment is approximately 2300H
bytes in length.

The BNKXDOS.SPR module contains the non-resident portion of the
XDOS module. This segment will vary in length with MP/M II version.

The TMP.SPR module contains the code for the reentrant Terminal
Message Process. This module is approximately 300H bytes in length.

The BRS segment contains data and code used by banked RSPs that
does not have to be in common memory. Banked RSPs are valuable
because they minimize the common memory requirement.

The LCKLSTS.DAT segment is a special data structure that
maintains a record of open files and locked records on the system.
Each open file and locked record consumes a 10-byte entry in this
segment. The size of this segment is determined by parameters
specified during system generation.

The size of the CONSOLE.DAT segment depends on the number of
consoles specified for the system during the system generation
process. MP/M II supports from 1 to 16 consoles, and associated
with each console is a Terminal Message Processor (TMP) , identified
as TMPO through TMP15. The TMP provides the command line support
for each console. Each console uses 256 bytes within the
CONSOLE.DAT segment to contain the stack and buffers for its TMP.
The code for the TMP's is reentrant and resides within the TMP.SPR
segment.

The remaining memory is available for allocation to user memory
segments. The size, bank location, and number of user memory
segments are system generation options. MP/M II uses these memory
segments to load and execute transient programs.

All Information Presented here is Proprietary to Digital Research

14

MP/M II Programmer's Guide 1.4 Terminal Message Process

1.4 Terminal Message Process

The Terminal Message Process (TMP) refers to one of a
collection of XDOS system processes that are associated with the
system consoles. Each system console has its own TMP designated as
TMPO through TMP15. The number of system consoles implemented
depends on the number supported in the XIOS and how many are
specified during system generation. Clearly, the number of system
consoles cannot exceed the number supported in the XIOS. However, a
smaller number than the XIOS supported maximum can be specified
during system generation.

The system maintains the buffers, stack, and local variables
for each TMP in each system console's region of the CONSOLE.DAT
segment. The process descriptors for the TMP's are located in the
TMPD.DAT segment. The code, which is shared by all the TMP's, is a
single re-entrant routine within the TMP.SPR module. Thus, while
each TMP performs the same function for each system console, they
compete with each other as well as with any other running processes
for the CPU resource.

The TMP provides the command line support for system consoles
within MP/M II. This includes displaying the system prompt at the
console:

OA>

and reading the command line. The TMP reads the command line from
one of two sources: the console or a Submit file. Normally, it
reads from the console with the BDOS Read Buffer Input command.
Alternatively, it reads from the N.SUB file (N = the console number)
on the MP/M II system disk. This occurs only if the user has
previously entered a submit file at the console with the SUBMIT
facility.

After reading a command line, the TMP performs one of two
actions depending on the type of command entered. If the command
line is a new drive specification:

OA>B:

the TMP issues a BDOS Select Disk call to select the new drive. If
the system supports the newly selected drive, the TMP updates the
drive field of its Process Descriptor, displays the new prompt:

OB>
and waits for the next command line.

If the command is in any other form, the TMP assigns its
console to another system process, the Command Line Interpreter,
(CLI). The TMP then sends the command line along with fields
specifying its default drive, user number, list device and console
number to the CLI with the XDOS Send CLI Command. It then attempts
to attach the console. This suspends the TMP from execution because

All Information Presented here is Proprietary to Digital Research

15

MP/M II Programmer's Guide 1.4 Terminal Message Process

it no longer owns the system console. When the console becomes
free, the TMP reissues the prompt and the cycle repeats.

Note: The command level default drive and current user number
are maintained in the TMP Process Descriptor for each system
console. This information is displayed in the system prompt. If an
application program changes the current disk or user number by
making an explicit BDOS call, the TMP Process Descriptor values are
not changed. The USER utility does update the TMP Process
Descriptor user number when it sets the user number to a new value.
To do this, it locates the TMP Process Descriptor associated with
the console and updates its user number field.

1.5 Command Line Interpreter

When the Command Line Interpreter (CLI) receives a command line
sent to it with the XDOS Send Cli Command, it interprets the
command, and initiates the requested transient program or RSP.
Normally, the TMP sends the command line to the CLI. However, other
processes can also use the Send CLI Command function. Also, the
BDOS Program Chain function is implemented internally with the Send
CLI Command. Note: Any process making a Send Cli Command call must
first assign its console to the CLI.

The Send CLI Command function sends the command line to the CLI
by attempting to write the command line message to the system queue,
"CliQ". The command line message contains the current disk, user
number, list device and system console number in addition to the
ASCII command line. The CLIQ is a single message queue with a
length of 129 bytes. If the CLIQ already contains a command line
message, the nucleus suspends the process issuing the Send CLI
Command, and places it on the CLIQ's Enqueue List, where it remains
until the CLI reads the message. Once the CLI reads the message,
the process must compete with any others that may also reside on the
Enqueue List for the opportunity to write its message and regain the
ready state. The process with the highest priority that has been
on the list the longest always goes first.

The CLI accepts command line messages by reading the CLIQ. If
the queue is empty, the CLI is blocked from execution when it issues
the CLIQ read command. In this case, the CLI is suspended on the
CLIQ Dequeue List until another process issues a Send CLI Command,
at which point the CLI is removed from the Dequeue List and placed
on the Ready List. When it gets the CPU resource, the CLI's read
queue operation is completed and it receives the command line
message.

All Information Presented here is Proprietary to Digital Research

16

MP/M II Programmer's Guide 1.5 Command Line Interpreter

The command line read by the CLI must be in ASCII and usually
takes the form:

<command> <command tail>

where

<command> => {d:}filename{;password} or
=> queuename

<command tail> => <file spec> or
=> <file spec><delimiter><file spec>

<file spec> => {d:}filename{.typ}{;password}

<delimiter> => one or more blanks or a tab or
 one of the following: "=,/[]<>"

d: => MP/M II drive specification, "A"
 through "P"

filename => 1 to 8 character file name

typ => 1 to 3 character file type

password => 1 to 8 character password value

queuename => 1 to 8 character queue name of
 Resident System Process

Fields enclosed in curly brackets are optional. If there is no
drive specification {d:}, the current default drive is assumed. If
the type field {.typ} is omitted, a type field of all blanks is
implied. If the password field {;password} is omitted, a password
field of all blanks is implied. No type field is included in the
<command> file specification because the CLI assumes either a PRL or
COM type.

After the CLI reads a command line, it performs the following
steps:

1) It parses the command line to pick up the <command> field.

2) If there is no drive specification or password field, the
CLI attempts to open a queue named by the command field.
If the queue open is successful, the CLI assumes the queue
belongs to an RSP, and attempts to assign the console to
that RSP. If the RSP name is the same as its queue name,
the console assignment is made. In fact, this is the way a
RSP controls whether or not it receives the console
resource when it is initiated by the CLI. The CLI then
writes the <command tail> message along with the current
disk, user number, list device and system console number to

All Information Presented here is Proprietary to Digital Research

17

MP/M II Programmer's Guide 1.5 Command Line Interpreter

the RSP's queue. Because the RSP is typically blocked from
execution because of a queue read from its queue, this
sequence initiates the RSP for execution.

3) If the command field does not name a RSP queue, indicated by
an unsuccessful queue open or the presence of a drive
specification or password field, the CLI assumes it names a
file residing on the default or specified drive. It then
attempts to open the file, filename.PRL. If the open is
unsuccessful, it tries again with the file, filename.COM.
When the current user number is non-zero and the file to be
opened does not exist under that user number, the BDOS
attempts to open the file under user 0. The open operation
is successful if the file exists under user 0, and has the
system attribute set.

If neither open is successful, and no explicit drive
reference was made the CLI repeats the same sequence on the
MP/M II system drive. (The system drive is designated
during system generation) . The CLI does not make this
second attempt if the system drive was referenced in the
first attempt. In addition, regardless of the file's user
number, only files with the system attribute set are
accepted in the second open sequence.

In all cases, if the file password specified in the
<command> field does not match the password of a file
protected in Read mode, a password error terminates the
CLI's open operation.

4) If the command file open is successful, the CLI performs
different actions depending on whether the opened file is
of type PRL or COM. For PRL files, the CLI selects the
smallest available memory segment which can fit the PRL the
file. For COM files, the CLI selects the first available
absolute memory segment to load the file. Note: More than
one absolute memory segment can exist in a bank-switched
system.

5) If no memory segment is available, the program loading by
the CLI is terminated and the system returns an error
message. otherwise, the CLI loads the program into its
selected memory segment beginning at BASE+100H (BASE =
memory segment base address). If the command file is of
the PRL type and the selected memory segment is not
absolute, the CLI performs a relocation operation at this
time (See Section 1.6).

The load operation can be aborted if a read error occurs,
or in the case of COM files, if the selected memory segment
is not large enough to contain the file.

6) Once the program has been loaded, the CLI initializes the
memory segment base page beginning at BASE+OOOH. The base
page initialization is covered in more detail in Section
2.4.

All Information Presented here is Proprietary to Digital Research

18

MP/M II Programmer's Guide 1.5 Command Line Interpreter

7) Once the base page is initialized, the CLI sets up a Process
Descriptor for the loaded program, and assigns the command
file name to the process. The CLI also sets the current
disk, user number, list device and console number fields of
the Process Descriptor to the values received in the
command line message, and gives the process a 20-byte
stack. It then initiates the transient program with an
XDOS Create Process call. The CLI is then ready to read
the next command line and repeat the cycle.

1.6 Transient Programs

Under MP/M II, a transient program is one that the CLI loads
and initiates. As the name transient implies, the program is not
system resident. The system must load it into an available memory
segment every time it executes.

MP/M !I can execute two types of transient programs. The first
type, absolute programs, must run in an absolute memory segment. An
absolute memory segment is one that has a base address of zero (BASE
= OOOOH). The command files of absolute transient programs are
identified by a file type field of COM. A COM file contains the
absolute memory image of the file beginning at 100H. Thus, the CLI
loads a COM file into memory beginning at 100H. MP/M II COM files
are equivalent to those in CP/M.

The second type of transient program, Page Relocatable Programs
(PRLS), can run in relocatable or absolute memory segments. PRL
command files have a type field of PRL. A PRL file contains three
regions: a 1-page header, a code region, and a relocation bit map.
The header has a field containing the length of the program's code
region and a field specifying the minimum amount of additional data
space required by the program. The CLI uses this information to
select a memory segment for the program. The code region contains
the code and initialized data for the program. The CLI loads the
code region into memory beginning at BASE+100H, where BASE is the
memory segment base address.

The bit map consists of a bit string where each bit corresponds
to a byte in the code region. The first bit corresponds to the
first byte, the one loaded into BASE+100H. Because the bit map
immediately follows the code region in a PRL file, the offset of the
bit map equals the program length value stored in the PRL header.
Each bit equal to 1 identifies the high byte of an address field
that requires relocation. During the program load operation, the
CLI adds the high byte or page offset of the address BASE to the
bytes identified for relocation by the bit map. This dynamically
relocates the program and allows it to run in relocatable memory
segments. PRL's loaded into absolute memory segments require no
relocation. Note: It is not possible to convert a COM file into a
PRL file. However, the reverse operation is possible and is
performed with the utility, PRLCOM (see Section 6.3).

All Information Presented here is Proprietary to Digital Research

19

MP/M II Programmer's Guide 1.6 Transient Programs

As part of the program load operation, the CLI initializes the
memory segment base page as follows:

BASE+OOOH : Direct XIOS and program termination jump
BASE+005H : BDOS and XDOS function jump
BASE+050H : Command file drive
BASE+051H : Password address of lst file in the command tail
BASE+053H : Password length of lst file in the command tail
BASE+054H : Password address of 2nd file in the command tail
BASE+056H : Password length of 2nd file in the command tail
BASE+05CH : Parsed FCB for lst file in the command tail
BASE+06CH : Parsed FCB for 2nd file in the command tail
BASE+080H : Command tail

During execution, a transient program makes BDOS or XDOS system
calls by calling BASE+5. Direct XIOS calls are made with the jump
at BASE+OOOH. Note: Direct XIOS calls are restricted to console
and list I/O. All memory within the segment below the address
contained in BASE+6 is available to the transient program. Thus,
transient programs can use this address to size memory. The
remaining information placed into the base page is data parsed out
of the command line. This information is provided as a convenience
to the programmer and is covered in detail in Section 2.

When the CLI initiates a transient program, it assigns a 20
byte stack area to the process. This stack is initialized in such a
way that if the program returns to the system, its execution is
terminated. A process can also terminate execution with a jump to
BASE+OOOH, a BDOS System Reset call, or an XDOS Terminate Process
call.

1.7 Resident System Processes

Resident System Processes (RSPs) are optional processes that
can be included with MP/M II during system generation. There are
two types of RSPs: standard and banked. A standard RSP is a page
relocatable file that has a filetype of RSP. When integrated into
MP/M II, a standard RSP resides in the common memory region. A
banked RSP consists of two page-relocatable files, both of which
have the same filename but have file type fields of RSP and BRS
respectively. When a banked RSP is included in MP/M II, the RSP
file loads into common memory, whereas the BRS file loads into
memory segment 0 in bank 0. Because all Process Descriptors and
queues must reside in common memory, the common module of a banked
RSP contains its Process Descriptor and any additional Process
Descriptors and queues.

The memory segment field of an RSPs Process Descriptor
designates whether the RSP is standard or banked. Standard RSPs set
the memory segment field to FFH; banked RSPs set the field to zero.
When a RSP is selected during the system generation process, GENSYS
checks this field, and if set to 0, includes the BRS file in memory
segment 0.

All Information Presented here is Proprietary to Digital Research

20

MP/M II Programmer's Guide 1.7 Resident System Processes

RSPs load into memory as part of the MPMLDR operation, and are
initiated following the XIOS System Initialization call and prior to
the initialization of the TMPs. Once initiated, an RSP runs like
any other process in the system, competing for the CPU and other
system resources on a priority basis.

If a RSP is to be invoked as a built-in command from the
console command line, it must perform the following steps:

1) Make a queue with a message length sufficiently large to
accept the command tail. The name of the queue is the
command name of the RSP. Because the CLI converts command
lines to upper-case, RSP queue names must be upper-case.
If the CLI is to assign the console to the RSP, the RSP's
Process Descriptor name must be the same as its queue name.

2) Make an unconditional Read Queue call to the queue. This
suspends the RSP on its queue's Enqueue List until the CLI
writes it a command line message.

3) Perform its task by making BDOS and XDOS function calls
using the command line message containing the current
drive, user, list device and system console number obtained
from the queue read. Note: An RSP does not make system
calls by calling location 5. The system initializes the
first two bytes of a standard RSP and the first two bytes
of the common module of an extended RSP to contain the
system entry point address. The system sets the first two
bytes of the bank-zero module of an banked RSP to the
beginning address of its corresponding common module.
RSP's must use these addresses to make system calls.

4) After performing its task, the RSP must make an XDOS Detach
Console call and an XDOS Detach List call if it is assigned
the console by the CLI. It then returns to step 2 and
awaits another command line.

Another special type of RSP is the Resident System Procedure.
A Resident System Procedure provides a method of serially utilizing
a block of code as a system resource. A Resident System Procedure
is set up by a RSP. The process creates a queue with the name of
the Resident System Procedure and sends it a single two-byte message
containing the address of the procedure to be accessed serially.
once this is accomplished, the RSP terminates itself.

The Resident System Procedure is accessed by opening the queue
and reading the two byte message to obtain the actual memory address
of the procedure. Because only one message resides in the queue,
only one process can gain access to the procedure. When the process
leaves the procedure, it writes the message containing the procedure
address back to the queue. This enables the next waiting process to
use the Resident System Procedure.

All Information Presented here is Proprietary to Digital Research

21

MP/M II Programmer's Guide 1.8 BDOS And XDOS Calling Conventions

1.8 BDOS and XDOS Calling Conventions

MP/M II's BDOS and XDOS system functions can be accessed by
both transient programs and RSPs. Transient programs make system
calls via the primary entry point at location BASE+005H, where BASE
equals the base address of the transient program's memory segment.
Standard RSPs obtain the system entry point address from the first
two bytes of the program. For banked RSPs, the first two bytes of
the common module contain the system entry point address. The first
two bytes of the bank-zero module contain the address of the common
module.

MP/M II uses a standard protocol for system function calls. It
is the same protocol used by CP/M. In general, when making a system
call, register C contains the function number, and register pair DE
contains the information address. Functions return single-byte
values in register A, and double-byte values in register pair HL.
Any system call made with an out-of-range or non-supported function
number, returns a 0FFFFH in register pair HL. Note: CP/M returns
with HL set to 0 on invalid function calls. For compatibility,
register A equals L and register B equals H upon return in all
cases. The register passing conventions of MP/M II agree with those
of Intel's PL/M systems programming language.

When entering a transient program, the system sets the stack
pointer to a 10-level stack, with the address contained in BASE+001H
pushed onto the stack. Thus, a return to the system is equivalent
to a jump to BASE+OOOH. Typically, this stack is sufficiently large
to handle system calls. However, most transient programs set up
their own stack and return to the system via a jump to location
BASE+OOOH. Because of the way RSPs are integrated into the system,
they must set up and initialize their own stack.

The programmer should be aware that BDOS and XDOS function
calls do not restore registers to their entry values upon return to
the calling program. The responsibility for saving and restoring
any critical register values rests with the calling process.

As an example, the following transient program illustrates how
to make system calls. This program reads characters continuously
until it encounters an asterisk, at which time it terminates
execution by returning to the system.

ORG OOOOH
BASE EQU $;BEGINNING OF MEMORY SEGMENT
BDOS EQU BASE+0005H ;MP/M II SYSTEM ENTRY POINT
CONIN EQU 1 ;CONSOLE INPUT FUNCTION
;

ORG 100H ;BASE OF TRANSIENT PROGRAM AREA
NEXTC MVI C,CONIN ;READ NEXT CHARACTER FUNCTION #

CALL BDOS ;RETURN CHARACTER IN A
CPI 1*1 ;END OF PROCESSING
JNZ NEXTC ;LOOP IF NOT
RET ;TERMINATE PROGRAM

END

All Information Presented here is Proprietary to Digital Research

22

All Information Presented here is Proprietary to Digital Research

23

Section 2
The BDOS Interface

2.1 BDOS Console and List I/O Interface

A primary design objective of MP/M II has been to achieve CP/M
compatibility. Thus, from the perspective of the applications
program there are only minor differences between CP/M and MP/M II
with regard to BDOS console and list I/O functions. These
differences are described in Section 2.4, BDOS Function Calls.

Each program executing under MP/M II has a data structure
called a Process Descriptor which defines the characteristics of the
process. One byte of the Process Descriptor identifies the console
and list I/O device numbers currently being used by the process.
The high-order 4 bits of this byte, labeled the CONSOLE/LIST field,
contain the list device number. The low-order 4 bits contain the
console device number. The BDOS console and list I/O functions
obtain the appropriate device number from the CONSOLE/LIST field of
the Process Descriptor to call the XIOS console or list subroutine.

A process must be attached to a console or list device to
access the device. This applies to both BDOS and direct XIOS
function calls. MP/M II intercepts all BDOS and direct XIOS
function calls for the console and list devices to determine if the
specified device is attached to the calling process. The function
call is permitted only if the device is currently unattached, or
attached to the calling process. If the device is attached to some
other process, MP/M II performs an XDOS Attach call for the
specified device. The calling process then blocks, suspending
execution, until the device is detached from the process owning the
device and the calling process is the highest priority process
requiring the device. Attaching a specific device to a process can
be done explicitly by making XDOS Attach Console or Attach List
calls, or implicitly by making BDOS and direct XIOS function calls
which in turn force device attachment.

MP/M II maintains tables of processes currently owning the
console and list devices. These tables contain Process Descriptor
addresses. It is thus possible for one process to own several
console or list devices by having its Process Descriptor address in
several table entries. Multiple devices can be attached by
repeatedly using the XDOS Set Console or Set List Device function
call followed by an XDOS Attach call. Later, when actual I/O is to
be performed, the specific console or list device must be set in the
Process Descriptor by making an appropriate XDOS Set Console or Set
List Device function call.

All console and list devices are detached from a process when
it terminates, allowing processes that were waiting for the devices
to resume execution.

All Information Presented here is Proprietary to Digital Research

24

MP/M II Programmer's Guide 2.1 BDOS Console and List I/O

While performing BDOS console I/O functions, there are several
ASCII control characters that cause MP/M II to take specific
actions. The TC character can abort the process owning the console.
The TD character forces the process owning the console to detach
from the console, allowing another waiting process to gain access to
the console, and then attaches the console again before continuing.
The TS and TQ characters are used to stop and re-start console
display output. The TS character will cause console display output
to be suspended. At that point a TQ can be typed to resume console
display output or a TC can be typed to abort the process owning the
console. Typing any other key when output has been suspended will
cause MP/M II to send the ASCII Bell character (TG) to the console.

2.2 BDOS File System

The Basic Disk Operating System (BDOS) supports a named file
system on one to sixteen logical drives. Each logical drive is
divided into two regions: a directory area and a data area. The
directory area defines the files that exist on the drive and
identifies the data area space that belongs to each file. The data
area contains the file data defined by the directory. The directory
area is subdivided into sixteen logically independent directories,
each identified by user numbers 0 through 15. In general, only
files belonging to the current user number are "visible" in the
directory. For example, the MP/M II DIR utility only displays files
belonging to the current user number.

The BDOS file system automatically allocates directory and data
area space when a file is created or extended and returns previously
allocated space to free space when a file is deleted. If no
directory or data space is available for a requested operation, the
BDOS returns an error to the calling process. These actions are
transparent to the calling process. As a result, the user does not
need to be concerned with directory and drive organization when
using the file system functions.

An eight-character filename field and a three character type
field identifies each file in a directory. An eight character
password can also be assigned to a file to protect it from
unauthorized access. All BDOS functions that involve file
operations specify the requested file by the filename and type
fields. Multiple files can be specified by an ambiguous reference.
An ambiguous reference uses one or more I'?" marks in the name or
type field to indicate that any character matches that position.
Thus, a name and type specification of all "?'"s (equivalent to a
command line file specification of "*.*") matches all files in the
directory that belong to the current user number.

The BDOS file system supports four categories of functions:
file access functions, directory functions, drive related functions,
and miscellaneous functions. The file access category includes
functions to make (create) a new file, open an existing file and
close an existing file. Both the make and open functions activate
the file for subsequent access by read and write functions. After a

All Information Presented here is Proprietary to Digital Research

25

MP/M II Programmer's Guide 2.2 BDOS File System

file has been opened, subsequent BDOS functions can read or write to
the file, either sequentially or randomly by record position. BDOS
read and write commands transfer data in 128 byte logical units,
which is the basic record size of the file system. The close
function performs two steps to terminate access to a file. First,
it indicates to the file system that the calling process has
finished accessing the file. The file then becomes available to
other processes. In addition, the function makes any necessary
updates to the directory to permanently record the current status of
the file.

BDOS directory functions operate on existing file entries in a
drive's directory. This category includes functions to search for
one or more files, delete one or more files, rename a file, set file
attributes, assign a password to a file, and compute the size of a
file. The BDOS search and delete functions are the only functions
that allow ambiguous file references. All other directory and file
related functions require a specific file reference. The BDOS file
system does not allow a process to delete, rename, or set the
attributes of a file that is currently opened by another process.

BDOS drive-related functions include those which select a drive
as the default drive, compute a drive's free space, interrogate
drive status and assign a directory label to a drive. The directory
label for a drive controls whether file passwords are to be honored,
and the type of date and time stamping to be performed for files on
the drive. Also included in this category are functions to reset
specified drives and to control whether other processes can reset
particular drives. When a drive is reset, the next operation on the
drive reactivates it by logging it in. The function of the log-in
operation is to initialize the drive for file and directory
operations. Under MP/M II, a successful drive reset operation must
be performed on drives that support removeable media before changing
disks.

Miscellaneous functions include those that set the current DMA
address, access and update the current user number, chain to a new
program, and flush the internal blocking/deblocking buffer. Also
included are functions to set the BDOS multi-sector count and the
BDOS error mode. The BDOS multi-sector count determines the number
of 128-byte records to be processed by BDOS read, write, record
lock, and record unlock functions. It can range from one to sixteen
128-byte records; the default value is one. The BDOS error mode
determines whether the BDOS file system intercepts errors or returns
all errors to the calling process.

All Information Presented here is Proprietary to Digital Research

26

MP/M II Programmer's Guide 2.2 BDOS File System

The following list summarizes the operations performed by the
BDOS file system:

Disk System Reset
Drive Selection
File Creation
File Open
File Close
Directory Search
File Delete
File Rename
Random or Sequential Read
Random or Sequential Write
Interrogate Selected Disks
Set DMA Address
Set/Reset File Indicators
Reset Drive
Access/Free Drive
Random Write With Zero Fill
Lock and Unlock Record
Set Multi-Sector Count
Set BDOS Error Mode
Get Disk Free Space
Chain To Program
Flush Buffers
Set Directory Label
Return Directory Label
Read and Write File XFCB
Set/Get Date and Time
Set Default Password
Return BDOS Serial Number

The following sections contain information on important topics
related to the BDOS file system. The reader should be familiar with
the content of these sections before attempting to use the BDOS
functions described individually in Section 2.4.

2.2.1 File Naming Conventions

Under MP/M II, filenames consist of four parts: the drive
select code (d), the filename field, the file type field, and the
file password field. The general format for a command line file
specification is shown below:

{d:}filename{.typ} {;password}

The drive select code field specifies the drive where the file is
located. The filename and type fields identify the file. The
password field specifies the password if a file is password
protected.

All Information Presented here is Proprietary to Digital Research

27

MP/M II Programmer's Guide 2.2.1 File Naming Conventions

The drive, type, and password fields are optional and the
delimiters " : . ; " are required only when specifying their associated
field. The drive select code can be assigned a value from "A" to
"P" where the actual drive codes supported on a given system is
determined by the XIOS implementation. When the drive code is not
specified, the current default drive is indicated. The filename
field can contain one to eight non-delimiter characters, the file
type field, one to three non-delimiter characters, and the password
field, one to eight non-delimiter characters. All alphabetic
characters must be in uppercase. In addition, all three fields are
padded with blanks, if necessary. Omitting the optional type or
password fields implies a field specification of all blanks.

The MP/M II Parse Filename function recognizes certain ASCII
characters as valid delimiters when it parses a file from a command
line. The valid characters are shown in Table 2-1.

Table 2-1. Valid Filename Delimiters
ASCII HEX EQUIVALENT

:
.
;
=
,
/
[
]
<
>

3A
2E
3B
3D
2C
2F
5B
5D
3C
3E

The Parse Filename function also excludes all control characters
from the file fields and translates all lower-case letters to upper
case.

The characters "(" and ")" should be avoided in filename and
type fields because they are commonly used delimiters. The
characters "*" and "?" must not be used in filename and type fields
unless they are used to make an ambiguous reference. If the Parse
Filename function encounters a "*" in a file name or type field, it
pads the remainder of the field with "?" marks. For example, a
filename of "X*.*" is parsed to "X???????.???". The BDOS search and
delete functions treat a "?" in the filename and type fields as
follows: A "?" in any position matches the corresponding field of
any directory entry belonging to the current user number. Thus, a
search operation for "X???????.???" finds all the current user files
on the directory beginning in "X". Most other file related BDOS
functions treat the presence of a "?" in the filename or type field
as an error.

It is not mandatory to follow the file naming conventions of
MP/M II when creating or renaming a file with BDOS functions.
However, the conventions must be used if the file is to be accessed
from a command line. For example, the CLI cannot locate a command

All Information Presented here is Proprietary to Digital Research

28

MP/M II Programmer's Guide 2.2.1 File Naming Conventions

file in the directory if its filename or type field contains a
lower-case letter.

As a general rule, the file type field names the generic
category of a particular file, while the filename distinguishes
individual files in each category. Although they are generally
arbitrary, the file types listed below name some of the generic
categories that have been established.

ASM Assembler Source PLI PL/I Source File
PRN Printer Listing REL Relocatable Module
HEX Hex Machine Code TEX TEX Formatter Source
BAS Basic Source File BAK ED Source Backup
INT Intermediate File SYM SID Symbol File
COM Command File $$$ Temporary File
PRL Page Relocatable RSP Resident Sys. Process
SPR Sys. Page Reloc. SYS System File
DAT Data File BRS Banked RSP File

2.2.2 Disk Drive and File Organization

The BDOS file system can support from one to sixteen logical
drives. The maximum file size supported on a drive is 32 megabytes.
The maximum capacity of a drive is determined by the data block size
specified for the drive in the XIOS. The data block size is the
basic unit in which the BDOS allocates disk space to files. Table
2-2 displays the relationship between data block size and drive
capacity.

 Table 2-2. Logical Drive Capacity
Data Block Size Maximum Drive Capacity
1K
2K
4K
8K
16K

256 Kilobytes
64 Megabytes
128 Megabytes
256 Megabytes
512 Megabytes

Logical drives are divided into two regions: a directory area
and a data area. The directory area contains from one to sixteen
blocks located at the beginning of the drive. The actual number is
set in the XIOS. This area contains entries that define which files
exist on the drive. The directory entries corresponding to a
particular file define which data blocks in the drive's data area
belong to the file. These data blocks contain the file's records.
The directory area is logically subdivided into sixteen independent
directories identified as user 0 through 15. Each independent
directory shares the actual directory area on the drive. However, a
file's directory entries cannot exist under more than one user
number. In general, only files belonging to the current user number
are visible in the directory.

All Information Presented here is Proprietary to Digital Research

29

MP/M II Programmer’s Guide 2.2.2 Disk Drive and Organization

Each disk file consists of a set of up to 242,144 128-byte
records. Each record in a file is identified by its position in the
file. This position is called the record's random record number.
If a file is created sequentially, the first record has a position
of zero, while the last record has a position one less than the
number of records in the file. Such a file can be read sequentially
in record position order beginning at record zero, or randomly by
record position. Conversely, if a file is created randomly, records
are added to the file by specified position. A file created in
this way is called "sparse" if positions exist within the file where
a record has not been written.

The BDOS automatically allocates data blocks to a file to
contain its records on the basis of the record positions consumed.
Thus, a sparse file that contains two records, one at position zero,
the other at position 242,143, would consume only two data blocks in
the data area. Sparse files can only be created and accessed
randomly, not sequentially. Note that any data block allocated to a
file is permanently allocated to the file until the file is deleted.
There is no other mechanism supported by the BDOS for releasing data
blocks belonging to a file.

Source files under MP/M are treated as a sequence of ASCII
characters, where each "line" of the source file is followed by a
carriage-return line-feed sequence (ODH followed by OAH). Thus a
single 128-byte record could contain several lines of source text.
The end of an ASCII file is denoted by a control-Z character (1AH)
or a real end of file, returned by the BDOS read operation.
Control-Z characters embedded within machine code files such as COM
or PRL files are ignored. The end of file condition returned by
BDOS is used to terminate read operations.

2.2.3 File Control Block Definition

The File Control Block (FCB) is a data structure used with the
BDOS file access and directory functions. All of these functions
reference an FCB to determine the file or files to be operated on.
Certain fields in the FCB are also used for invoking special options
associated with some functions. other functions use the FCB to
return data to the calling process. Most importantly, when a
process opens a file and subsequently accesses it with read, write,
lock, and unlock record functions, the BDOS file system maintains
the current file state and position within the user's FCB. In
addition, all BDOS random I/O functions specify the random record
number with a 3-byte field at the end of the FCB.

When making a file access or directory BDOS function call,
register pair DE must address a FCB. The length of the FCB data
area depends on the BDOS function. For most functions, the required
length is 33 bytes. For random I/O functions and the Compute File
Size function, the FCB length must be 36 bytes. When either the
BDOS Open or Make File functions specify a file is to be opened in
unlocked mode, the FCB must be 35 bytes in length. The FCB format
is shown on the next page.

All Information Presented here is Proprietary to Digital Research

30

MP/M II Programmer's Guide 2.2.3 File Control Block Definition

--
:dr:fl:f2: ... :f8:tl:t2:t3:ex:sl:s2:rc:d0: ... :dn:cr:r0:rl:r2:
--
 00 01 02 ... 08 09 10 11 12 13 14 15 16 ... 31 32 33 34 35

where

dr drive code (0 - 16)
0 => use default drive for file
1 => auto disk select drive A,
2 => auto disk select drive B,
. . .
16 => auto disk select drive P.

fl . . .f8 contain the file name in ASCII
upper case, with high bit = 0.
f1’. . . f8' denote the high
order bit of these positions,
and are file attribute bits.

tl,t2,t3 contain the file type in ASCII
upper case, with high bit = 0.
t1’, t2’ and t3’denote the
high bit of these positions,
and are file attribute bits.
tl' = 1 => Read/Only file
t2' = I => System file
t3’ = 1 => File has been archived

ex contains the current extent number,
normally set to 0 by the calling process, but
can range 0 - 31 during file I/O

cs contains the FCB checksum value for
open FCBs.

rs reserved for internal system use, set
to zero on call to OPEN, MAKE, SEARCH

rc record count for extent "ex"
takes on values from 0 – 128

dO dn filled-in by MP/M, reserved for
system use

cr current record to read or write in
a sequential file operation, normally
set to zero by the calling process when a
file is opened or created

rO,rl,r2 optional random record number in the
range 0-242,143 (0 - 3FFFFH).
ro,rl,r2 constitute a 18 bit value
with low byte rO, middle byte rl, and
high byte r2.

All Information Presented here is Proprietary to Digital Research

31

MP/M II Programmer's Guide 2.2.3 File Control Block Definition

Note : The 2-byte File ID is returned in bytes rO and rl when a
file is successfully opened in unlocked mode (see Section 2.2.8).

For BDOS directory functions, the calling process must
initialize bytes 0 through 11 of the FCB before issuing the function
call. The Set Directory Label and Write File XFCB functions also
require the calling process to initialize byte 12. The BDOS Rename
File function requires the calling process to place the new file
name and type in bytes 17 through 27.

BDOS open or make function calls require the calling process to
initialize bytes 0 through 12 of the FCB before issuing a file open
or make function call. Normally, byte 12 is set to zero. In
addition, if the file is to be processed from the beginning using
sequential read or write functions, byte 32 (cr) must be zeroed.
After an FCB is activated by an open or make operation, the FCB
should not be modified by the user. Open FCBs are checksum verified
to protect the integrity of the file system. In general, if a
process modifies an open FCB, the next read, write, or close
function call will return with a checksum error. See Section 2.2.9
for more on FCB checksums. Normally, sequential read or write
functions do not require initialization of an open FCB. However,
random I/O functions require that a process set bytes 33 through 35
to the requested random record number prior to making the function
call.

File directory elements maintained in the directory area of
each disk drive have the same format as FCB's (excluding bytes 32
through 35), except for byte 0 which contains the file's user
number. Both the Open File and Make File functions bring these
elements (excluding byte 0) into memory in the FCB specified by the
calling process. All read and write operations on a file must
specify an FCB activated in this manner. Otherwise, a checksum
error is returned. The BDOS updates the memory copy of the FCB
during file processing to maintain the current position within the
file. During file write operations, the BDOS updates the memory
copy of the FCB to record the allocation of data to the file, and at
the termination of file processing, the Close File function
permanently records this information on disk. Note that data
allocated to a file during file write operations is not completely
recorded in the directory until the calling process issues a
Close File call. Therefore, it is mandatory that a process which
creates or modifies files, close the files at the termination of any
write processing, otherwise, data may be lost.

As a general rule under MP/M II, a process should close files
as soon as they are no longer needed, even if they have not been
modified. The BDOS file system maintains an entry in the system
lock list (LCKLSTS.DAT memory segment) for each file opened by each
process on the system. This entry is not removed from the system
lock list until the file is closed or the process owning the entry
terminates. The BDOS file system uses this entry to prevent other
processes from accessing the file unless the file was opened in a
mode that supports shared access. Normally, a process must close a
file before other processes on the system can access the file.

All Information Presented here is Proprietary to Digital Research

32

MP/M II Programmer's Guide 2.2.3 File Control Block Definition

Keep in mind that the space in the system lock list is a
limited resource under MP/M II. If a process attempts to open a
file and no space exists in the system lock list, or the process
exceeds the process open file limit (specified during system
generation), the BDOS denies the open operation and usually aborts
the calling process.

The high-order bits of the FCB filename (fl',...,f8’) and type
(tl',t2',t3') fields are called attribute bits. Attributes bits are
1 bit boolean fields where 1 indicates on or true, and 0 indicates
off or false. Attribute bits have two functions within the file
system: as file attributes and interface attributes.

The file attributes (fl',...,f4' and tl',t2',t3') are used to
indicate that a file has a defined attribute. These bits are
recorded in a file's directory FCBs. File Attributes can only be
set or reset by the BDOS Set File Attributes function. When the
BDOS Make File function creates a file, it initializes all file
attributes to zero. A process can interrogate file attributes in an
FCB activated by the BDOS Open File function or in directory FCBs
returned by the BDOS Search For First and Search For Next functions.
Note: the BDOS file system ignores the file attribute bits when it
attempts to locate a file in the directory.

The file attributes (tl’,t2',t3') are defined by the file
system as follows:

t1’: Read/Only attribute - The file system prevents write
operations to a file with the read/only attribute set.

t2’: System Attribute - This attribute, if set, identifies the file
as a MP/M II system file. System files are not normally
displayed by the MP/M II DIR utility. In addition, user zero
system files can be accessed on a read/only basis from other
user numbers (see Section 2.2.8).

t3’: Archive Attribute - This attribute is designed for user
written archive programs. When a archive program copies a
file to backup storage, it sets the archive attribute of the
copied files. The file system automatically resets the
archive attribute of a directory FCB that has been issued a
write command. The archive program can test this attribute
in each of the file's directory FCBs via the BDOS Search and
Searchn functions. If all directory FCBs have the archive
attribute set, it indicates that the file has not been
modified since the previous archive. Note that the MP/M II
PIP utility supports file archival.

Attributes fl' through f8’ are available for definition by the user.

The interface attributes are f5' through f8'. These attributes
cannot be used as file attributes. Interface attributes f5’ and f6’
are used to request options for BDOS calls requiring an FCB address
in register pair DE. They are used by the BDOS Open, Make, Close,

All Information Presented here is Proprietary to Digital Research

33

MP/M II Programmer's Guide 2.2.3 File Control Block Definition

and Delete File functions. Table 2-3 shows the f5’ and f6’
interface attribute definitions for these functions.

Table 2-3. BDOS Interface Attributes

open function

Make function

Close function

Delete function

f5’ = 1 : Open in unlocked mode
f6’ = 1 : Open in read/only mode

f5’ = 1 : Open in unlocked mode
f6’ = 1 : Assign password to file

f5' = 1 : Partial Close

f5' = 1 : Delete file XFCBs only

The interface attributes are discussed in detail for each of the
above functions in Section 2.4. Attributes f5’ and f6’ are always
reset when control is returned to the calling process. Interface
attributes f7' and f8' are reserved for internal use by the BDOS
file system.

The BDOS search and delete functions allow multiple file
(ambiguous) reference. In general, a ? mark in the filename, type,
or extent field matches any value in the corresponding positions of
directory FCBs during a directory search operation. The BDOS search
functions also recognize a ? mark in the drive code field, and if
specified, they return all directory entries on the disk regardless
of user number including empty entries. A directory FCB beginning
with E5H is an empty directory entry.

2.2.4 User Number Conventions

The MP/M II User facility divides each drive directory into
sixteen logically independent directories, designated as user 0
through user 15. Physically, all user directories share the
directory area of a drive. In most other aspects, however, they are
independent. For example, files with the same name can exist on
different user numbers of the same drive with no conflict. However,
a single file cannot reside under more than one user number.

Only one user number is active for a process at one time, and
the current user number applies to all drives on the system.
Furthermore, the FCB format does not contain any field that can be
used to override the current user number. As a result, all file and
directory operations reference directories associated with the
current user number. However, it is possible for a process to
access files on different user numbers by setting the user number to
the file's user number with the BDOS Set User command prior to
issuing the desired BDOS function call for the file. Note that this
technique must be used carefully. If a process attempts to read or
write to a file under a user number that is not the same as the user
number that was active when the file was opened, the BDOS file
system returns a FCB checksum error.

All Information Presented here is Proprietary to Digital Research

34

MP/M II Programmer's Guide 2.2.4 User Number Conventions

When the CLI initiates a transient program or RSP, its user
number is set to the value established by the process issuing the
XDOS Send Cli Command. Normally, the sending process is the TMP.
However, the sending process may be another process such as a
transient program that makes a BDOS Chain Program call. A transient
program can change its user number by making a BDOS set user call.
Changing the user number in this way does not affect the command
line user number displayed by the TMP. Thus, when a transient
program that has changed its user number terminates, the original
user number for the console is restored when the TMP regains
control.

User 0 has special properties under MP/M II. With some
restrictions, the file system automatically opens a file under user
zero, if it is not present under the current user number. Of
course, this action is only performed when the current user number
is not zero. In addition, a file on user zero must have the system
attribute (t2') set to be eligible for this operation. This
procedure allows utilities that may include overlays and any other
commonly accessed files to be placed on user zero, but be available
for access from other user numbers. As a result, it eliminates the
need for copying commonly needed utilities to all user numbers on a
directory, and gives the MP/M II user control over which user zero
files are directly accessible from other user numbers. Refer to
Section 2.2.8 for more information on this topic.

2.2.5 Directory Labels and XFCBs

The BDOS file system includes two special types of FCB's, the
XFCB and the Directory Label. The XFCB is an "extended" FCB that
can optionally be associated with a file in the directory. if
present, it contains the file's password field and date and time
stamp information. The format of the XFCB is shown below:

XFCB FORMAT

:dr: file : type :pm:sl:s2:rc: password : tsl : ts2 :
:---:
:00 01. . 09. . 12 13 14 15 16. . . 25. 29. :

dr drive code (0 - 16)
file file name field
type file type field

pm password mode
bit 7 - Read mode
bit 6 - Write mode
bit 5 - Delete mode
** - bit references are right to left,

 relative to 0
sl,s2,rc - reserved for system use
password - 8 byte password field (encrypted)
tsl - 4 byte creation or access time stamp field
ts2 - 4 byte update time stamp field

All Information Presented here is Proprietary to Digital Research

35

MP/M II Programmer's Guide 2.2.5 Directory Labels and XFCBs

An XFCB can be created for a file in two ways: automatically,
as part of the BDOS Make function or explicitly, by the BDOS
function, Write File XFCB. The BDOS file system does not
automatically create an XFCB for a file unless a Directory Label is
present on the file's drive. The BDOS Read File XFCB function
returns a file's XFCB if it exists in the directory. Note that in
the directory, an XFCB is identified by a drive byte value (byte 0
in the FCB) equal to 16 + N, where N equals the user number.

The Directory Label specifies for a drive if passwords for
password protected files are to be required, if date and time
stamping for files is to be performed, and if XFCBs are to be
created automatically for files by the Make function. The format of
the Directory Label is similar to that of the XFCB as shown below:

 DIRECTORY LABEL FORMAT

 --
 :dr: name : type :dl:sl:s2:rc: password : ts : ts2 :
 : ---:
 :00 01. . 09 .. 12 13 14 15 16.... 25. 29. :
 : ---:

dr - drive code (0 - 16)
name - Directory Label name
type - Directory Label type
dl - Directory Label data byte

bit 7 - require passwords for files
bit 6 - perform access time stamping
bit 5 - perform update time stamping
bit 4 - Make creates XFCBs
bit 0 - Directory Label exists
** - bit references are right to left,

 relative to 0
sl,s2,rc - n/a
password - 8 byte password field (encrypted)
tsl - 4 byte creation time stamp field
ts2 - 4 byte update time stamp field

Only one Directory Label can exist in a drive's directory. The
Directory Label name and type fields are not used to search for a
Directory Label in the directory; they can be used to identify a
diskette or a drive. A Directory Label can be created or its fields
can be updated by the BDOS function, Set Directory Label. This
function can also assign a Directory Label a password. The
Directory Label password, if assigned, cannot be circumvented,
whereas file password protection is an option controlled by the
Directory Label. Thus, access to the Directory Label password
provides a kind of super-user status for that drive.

Note: The BDOS file system provides no function to read the
Directory Label FCB directly. However, the Directory Label data
byte can be read directly with the BDOS function, Return Directory
Label. In addition, the BDOS Search functions (‘?' in FCB drive

All Information Presented here is Proprietary to Digital Research

36

MP/M II Programmer's Guide 2.2.5 Directory Labels and XFCBs

byte) can be used to find the Directory Label on the default drive.
In the directory, the Directory Label is identified by a drive byte
value (byte 0 in the FCB) equal to 32 (20H).

2.2.6 File Passwords

Files may be assigned passwords in two ways: by the Make File
function if the Directory Label specifies automatic creation of
XFCBs or by the Write File XFCB function. A file's password can
also be changed by the Write File XFCB function if the original
password is supplied. However, a file's password cannot be changed
without the original password even when password protection for the
drive is disabled by the Directory Label.

Password protection is provided in one of three modes. Table
2-4 shows the difference in access level allowed to BDOS functions
when the password is not supplied.

 Table 2-4. Password Protection Modes

Password
Mode

Access level allowed when the password
is not supplied

1. Read

2. Write

3. Delete

The file cannot be read

The file can be read but not modified.

The file can be modified but not
deleted.

If a file is password protected in Read mode, the password must be
supplied to open the file. A file protected in Write mode cannot be
written to without the password. A file protected in Delete mode
allows read and write access, but the user must specify the password
to delete the file, rename the file, or to modify the file's
attributes. Thus, password protection in mode 1 implies mode 2 and
3 protection, and mode 2 protection implies mode 3 protection. All
three modes require the user to specify the password to delete the
file, rename the file, or to modify the file's attributes.

If the correct password is supplied, or if password protection
is disabled by the Directory Label, then access to the BDOS
functions is the same as for a file that is not password protected.
In addition, the Search For First and Search For Next functions are
not affected by file passwords.

All Information Presented here is Proprietary to Digital Research

37

MP/M II Programmer's Guide 2.2.6 File Passwords

Table 2-5 lists the BDOS functions that test for password.

 Table 2-5. BDOS Functions That Test For Password
15. Open File
19. Delete File
23. Rename File
30. Set File Attributes
100. Set Directory Label
103. Write File XFCB

File passwords are eight bytes in length. They are maintained
in the XFCB and Directory Label in encrypted form. To make a BDOS
function call for a file that requires a password, a process must
place the password in the first eight bytes of the current DMA or
specify it with the BDOS function, Set Default Password, prior to
making the function call. Note: the BDOS maintains the assigned
default password on a system console basis and retains it across
process termination.

2.2.7 File Date and Time Stamps

The BDOS file system can record when a file was created or last
accessed, and/or last updated. It records the creation stamp only
when an XFCB is automatically created by the Make File function. If
an XFCB is created by the Make File XFCB function, the creation
stamp is set to zero. The Close File function makes the update
stamp if a write operation is made to the file while the file is
open. The Open File function makes the access stamp if the file is
successfully opened. The creation date stamp is overwritten when
access stamping is performed because only two date and time fields
reside in the XFCB and the access and creation time stamps share the
same field.

The drive's Directory Label determines the type of date and
time stamping supported for files on a drive. If a drive does not
have a Directory Label, or if it is read/only, or if the drive's
directory label does not specify date and time stamping, then no
date and time stamping for files is performed. In addition, a file
must have an XFCB to be eligible for date and time stamping. For
the Directory Label itself, time stamps record when it was created
and last updated. No access stamping for Directory Labels is
supported.

A process can directly access the date and time stamps for a
file by using the Read File XFCB function. No mechanism is provided
to directly update XFCB date and time fields.

The BDOS file system uses the MP/M internal date and time when
it records a date and time stamp. On MP/M II systems that do not
support a clock, date and time stamps record the last initialized
value for the system date and time. The MP/M II TOD utility can be
used to set the system date and time.

All Information Presented here is Proprietary to Digital Research

38

MP/M II Programmer's Guide 2.2.8 File open Modes

2.2.8 File Open Modes

The BDOS file system provides three different modes of opening
files. They are defined as follows:

locked mode:

A process can open a file in locked mode only if the file is
not currently opened by another process. once open in locked
mode, no other process can open the file until it is closed.
Thus, if a process successfully opens a file in locked mode,
that process in effect owns the file until the file is closed
or the process terminates. Files opened in locked mode
support read and write operations unless the file is a
read/only file (attribute tl' set) or the file is password
protected in Write mode and the password is not supplied with
the BDOS Open File call. In both of these cases, only read
operations to the file are allowed. Note: locked mode is
the default mode for opening files under MP/M II.

unlocked mode:

A process can open a file in unlocked mode if the file is not
currently open, or if the file has been opened by another
process in unlocked mode. This mode allows more than one
process to open the same file. Files opened in unlocked mode
support read and write operations unless the file is a
read/only file (attribute tl' set) or the file is password
protected in Write mode and the password is not supplied with
the BDOS Open File call. However, when a file opened in
unlocked mode is extended by a write operation, the BDOS
allocates space to the file in data block units, not in 128
byte record units as is normally the case. The BDOS record
locking and unlocking functions are only supported for files
opened in unlocked mode.

When opening a file in unlocked mode, a process must reserve
35 bytes in the FCB, because the Open File function returns a
2-byte value called the File ID in the rO and rl bytes of the
FCB. The File ID is a required parameter for the BDOS record
lock and record unlock commands.

read/only mode:

A process can open a file in read/only mode if the file is
not currently opened by another process, or the file has been
opened by another process in read/only mode. This mode
allows more than one process to open the same file for
read/only access.

The open function performs the following steps for files opened
in locked or read/only mode. If the current user is non-zero, and
the file to be opened does not exist under the current user number,

All Information Presented here is Proprietary to Digital Research

39

MP/M II Programmer's Guide 2.2.8 File Open Modes

the open function searches user zero for the file. If the file
exist, under user zero and the file has the system attribute (t2')
set, the file is opened under user zero. The open mode is
automatically forced to read/only when this is done. For more
information on this, refer to Section 2.2.4.

The open function also performs the following action for files
opened in locked mode when the current user number is zero. If the
file exists under user zero and has the system (t2’) and read/only
(tl') attributes set, the open mode is automatically set to
read/only. Thus, the read/only attribute controls whether a user
zero system file can be concurrently opened by a user-zero process
and processes on other user numbers when each process opens the file
in the default locked mode. If the read/only attribute is set, all
processes open the file in read/only mode and concurrent access of
the file is allowed. However, if the read/only attribute is reset,
the user-zero process opens the file in locked mode. if it
successfully opens the file, no other process can open it. if
another process has the file open, its open operation is denied.

Table 2-6 shows the definition of the FCB interface attributes
f5' and f6’ for the BDOS Open File function.

 Table 2-6. FCB Interface Attributes F5’ F6’
 Open File Function

f5' = 0, f6’ = 0 - open in locked mode (default mode)
f5' = 1, f6’ = 0 - open in unlocked mode
f5' = 0 or 1, f6’ = 1 - open in read/only

Interface attribute f5’ designates the open mode for the BDOS Make
File function. Table 2-7 shows the definition of the FCB interface
attribute f5' for the Make File function.

 Table 2-7. FCB Interface Attribute F6’
 Make Function

 f5' = 0 - open in locked mode (default mode)
 f5’ = 1 - open in unlocked mode

Note: the Make File function does not allow opening the file in
read/only mode.

2.2.9 File Security

In general, the security measures implemented in the BDOS file
system are intended to prevent accidental collisions between running
processes. It is not possible to provide total security under MP/M
II because the BDOS file system maintains file allocation
information in open FCBs in the user's memory region, and MP/M II
does not support memory protection. In the worst case, a program

All Information Presented here is Proprietary to Digital Research

40

MP/M II Programmer's Guide 2.2.9 File Security

that "crashes" on MP/M II can take down the entire system.
Therefore, MP/M II requires that all processes running on the system
be "friendly." However, the BDOS file system is designed to ensure
that multiple processes can share the same file system without
interfering with each other. It does this in two ways:

 • it performs checksum verification of open FCB's.

 • it monitors all open files and locked records via the system
lock list (LCKLSTS.DAT).

User FCBs are checksum validated before I/O operations to
protect the integrity of the file system from corrupted FCBs. The
Open File and Make File functions compute and assign checksums to
FCBs. The Read, Write, Lock Record, Unlock Record and Close File
functions subsequently verify and recompute the checksums when the
FCB changes. If the BDOS detects an FCB checksum error, it does not
perform the requested command. Instead, it either terminates the
calling process with an error, or if the process is in BDOS return
error mode (see Section 2.2.13), it returns to the process with an
error code.

The system lock list is established during the system
generation process at which time the user can establish the size of
the list and also define limits for the number of files a single
process can open and the number of records a single process can
lock. Each time a process opens a file or locks a record
successfully, the BDOS file system allocates an entry in the system
lock list to record the fact. The file system uses this information
to:

 • prevent a process from deleting, renaming, or updating the
attributes of another process's open file.

 • prevent a process from opening a file currently opened by
another process unless both processes open the file in locked
or read/only mode.

 • prevent a process from resetting a drive on which another
process has an open file.

 • prevent a process from locking or updating a record currently
locked by another process. Refer to Section 2.2.10 for more
information on record locking and unlocking.

For reasons of efficiency, the file system verifies only for certain
functions whether another process has the FCB specified file open.
These functions are: Open File, Make File, Delete File, Rename
File, and Set File Attributes. For open FCBs, the FCB checksum
controls whether the process can use the FCB. By definition, a
valid FCB checksum implies that the file has been successfully
opened and an entry for the file resides in the system lock list.
When a process closes a file permanently, the file system removes
the file from the system lock list and invalidates its FCB checksum
field.

All Information Presented here is Proprietary to Digital Research

41

MP/M II Programmer's Guide 2.2.9 File Security

There are several other situations where the file system
removes open file entries from the system lock list for a process.
For example, if a process makes a delete call for a file that it has
open in locked mode, the file system deletes the file and also
removes the file's entry from the system lock list. Deleting an
open file is not recommended practice under MP/M but is supported
for files opened in locked mode (the default open mode) , to provide
compatibility with software written under earlier releases of MP/M
and CP/M. Note that the file system does not delete a file opened
in unlocked or read/only mode.

To ensure that the process does not use the FCB corresponding
to the deleted file, the file system subsequently checks all open
FCBs for the process to ensure that a lock list item exists for the
FCB. Each open FCB is checked the next time it is used. If a lock
list entry exists for the file, the operation is allowed to proceed.
Otherwise, a FCB checksum error is returned.

The file system performs this verification of open FCBs for all
situations where it purges an open file entry from the system lock
list. The following list describes these situations:

 • A process deletes a file it has open in locked mode.

 • A process renames a file it has open in locked mode.

 • A process updates the attributes via the BDOS Set File
Attributes command of a file it has open in locked mode.

 • A process issues a Free Drive call for a drive on which it has
an open file.

 • A change in media is detected on a drive that has open files.
This situation is a special case because a process cannot
control whether it occurs and it can impact more than one
process. Refer to Section 2.2.13 for more information on this
situation.

The automatic verification of open FCBs by the file system after
it purges a file entry from the system lock list can affect
performance. Each verification requires a directory search
operation. Therefore, it is strong y recommended that these
situations be avoided in new programs developed for MP/M II.

2.2.10 Concurrent File Access

More than one process can access the same file if each process
opens the file in the same shared access mode. BDOS supports two
shared access modes, unlocked and read/only. Read/only mode is
functionally identical to the default locked mode except that more
than one process can access the file and no process can change it.

All Information Presented here is Proprietary to Digital Research

42

MP/M II Programmer's Guide 2.2.10 Concurrent File Access

Files opened in unlocked mode present a more complex situation
because a file opened in this mode can be modified by multiple
processes concurrently. As a result, unlocked mode differs in some
important ways from the other open modes.

When a process opens a file in unlocked mode, the file system
returns a 2-byte field called the File ID in the rO and rl bytes of
the FCB. The File ID is a required parameter of the BDOS Lock
Record and Unlock Record functions.

The file system supports two mechanisms that allow processes to
coordinate update operations on files open in unlocked mode. The
record locking and unlocking functions allow a process to establish
and relinquish temporary ownership of particular records. A record
lock does not prevent another process from reading the locked
record; only write and lock operations for other processes are
intercepted. As an alternative, the Test and Write function
verifies the current contents of a record before allowing the write
operation to proceed.

The Record locking and unlocking functions and the Test and
Write function provide two fundamentally different approaches to
record update coordination. When a record is locked, the file
system allocates an entry in the system lock list, identifying the
locked record and associating it with the calling process. The
Unlock Record function removes the locked entry from the list.
While the locked record's entry exists in the system lock list, no
other process can lock or write to that record. Because the system
lock list is a limited resource under MP/M, a process is restricted
regarding the number of records it can lock.

The Test and Write function, on the other hand, performs its
verification at the I/O level. In a single indivisible operation,
it verifies that the user's current version of the record matches
the version on disk before allowing the write operation to proceed.
As a result, it is not restricted like the Record Lock function.
However, record update coordination can usually be performed more
efficiently with the lock functions.

The BDOS file system performs additional steps for read and
write operations to a file open in unlocked mode. These added steps
are required because the BDOS file system maintains the current
state of an open file in the user's FCB. When multiple processes
have the same file open, FCBs for the same file exist in each
processes' memory. To ensure that all process' have current
information, the file system updates the directory immediately when
an FCB for an unlocked file is changed. In addition, the file
system verifies error situations such as end of file or reading
unwritten data with the directory before returning an error. As a
result, read and write operations are less efficient for files open
in unlocked mode when compared to equivalent operations for files
opened in the default locked mode.

All Information Presented here is Proprietary to Digital Research

43

MP/M II Programmer’s Guide 2.2.10 Concurrent File Access

Extending a file is also a special situation for files opened
in unlocked mode. Normally, when a file is extended, the size of
the file is set to the random record number of the last record + 1.
However, when a file opened in unlocked mode is extended, the size
of the file is set to the random record number + 1 of the last 128
byte record in the file's last data block. A process must keep
track of the actual last record of a file extended while open in
unlocked mode, if that is required.

2.2.11 Multi-Sector I/O

The BDOS file system provides the capability to read or write
multiple 128-byte records in a single BDOS function call. This
multi-sector facility can be visualized as a BDOS "burst" mode,
enabling a process to complete multiple I/O operations without
interference from other running processes. The use of this facility
in an application program can improve its performance, and also
enhance overall system throughput. For example, the PIP utility
performs its sequential I/O with a multi-sector count of 8. Multi
sector I/O has its greatest impact, however, in the performance of
sequential I/O processing on MP/M II systems that support record
blocking/deblocking in their XIOS. Improved performance is achieved
by eliminating the need for a large percentage of XIOS physical
record pre-read operations.

The number of records that can be supported with multi-sector
I/0 ranges from one to sixteen. For transient programs, the default
value is one because the CLI initializes the multi-sector count of a
transient program to one when it initiates the program. The BDOS
Set Multi-Sector Count function can be used to set the count to
another value.

The multi-sector count determines the number of operations to
be performed by the following BDOS functions:

 o Sequential Read and Write functions

 o Random Read and Write functions including Write with Zero Fill
and Test and Write

 o Record Lock and Record Unlock functions

If the multi-sector count is N, calling one of the above functions
is equivalent to making N function calls. If a multi-sector I/O
operation is interrupted with an error, the file system returns the
number of 128-byte records successfully processed in the high-order
nibble of register H.

2.2.12 XIOS Blocking and Deblocking

An optional physical record blocking and deblocking facility
can be implemented as part of the XIOS when it is necessary to
maintain physical records on disk in units greater than 128-bytes.

All Information Presented here is Proprietary to Digital Research

44

MP/M II Programmer's Guide 2.2.12 XIOS Blocking and Deblocking

In general, record blocking and deblocking in the XIOS is
transparent to the BDOS file system as well as to programs that make
BDOS file system calls.

If this facility is implemented, then the XIOS sends data to or
receives data from the BDOS file system in logical 128-byte records,
but accesses the disk with a larger physical record size. The XIOS
uses an internal physical record buffer equal in size to the
physical record size to buffer logical records. The process of
building up physical records from 128-byte logical records is called
blocking, and it is required for BDOS write operations. The reverse
process is called deblocking and it is required for BDOS read
operations. For BDOS write operations, the XIOS postpones the
physical write operation for permanent drives (see Section 2.2.13)
if the write operation is not to the directory. For BDOS read
operations, the XIOS performs a physical read only if the current
physical record buffer does not contain the requested logical
record. In addition, if the physical record is "pending" as the
result of a previous write operation, the XIOS performs a physical
write operation prior to the read operation.

Postponing physical record write operations has implications
for some application programs. For those programs that involve file
updating, it is often critical to guarantee that the state of a file
on disk parallels the state of the file in memory after updating the
file. This is only an issue for systems that implement blocking and
deblocking because of the postponement of physical write operations.
If the system should crash while the physical buffer is pending,
data would be lost. To prevent this, the BDOS Flush Buffers
function can be invoked to force the write of any pending physical
buffers in the XIOS.

Note: The XDOS automatically calls this function when a process
terminates. In addition, the BDOS file system automatically makes a
Flush Buffers call in the Close File function.

2.2.13 Reset, Access and Free Drive

The BDOS functions Disk System Reset, Reset Drive, Access
Drive, and Free Drive allow a process to control when a drive's
directory is to be reinitialized for file operations. When MP/M II
is initiated by MPMLDR, all drives are initialized to the reset
state . Subsequently, as drives are referenced, they are
automatically logged-in by the file system. The log-in operation
initializes the drive for BDOS file operations. In general, once a
drive is logged-in, it is not necessary to relog the drive unless a
disk media change is to be made. However, MP/M II requires that a
successful drive reset be performed for a drive before a media
change. If a drive is in the reset state when the media is changed,
the next access to the drive logs in the drive. Note that the Disk
System Reset and Reset Drive functions have similar effects except
that the Disk System Reset function is directed to all drives on the
system. The user can specify any combination of drives to be reset
with the Reset Drive function.

All Information Presented here is Proprietary to Digital Research

45

MP/M II Programmer’s Guide 2.2.13 Reset, Access and Free Drive

Under MP/M II, the drive reset operation is conditional in
nature. Generally speaking, the file system cannot reset a drive
for a process if another process has an open file on the drive.
However, the exact action taken by a drive reset operation depends
on whether the drive to be reset is permanent or removeable. MP/M
II determines whether a drive is permanent or removeable by
interrogating a bit in the drive's disk parameter block (DPB) in the
XIOS (refer to the MP/M II System's Guide for a detailed discussion
of the DPB) . A high-order bit of 1 in the DPB checksum vector size
field designates the drive as permanent. Under MP/M II, a drive's
designation is critical to the reset operation, which is described
below.

The BDOS first determines if there are any files currently open
on the drive to be reset. If there are none, the reset takes place.
otherwise, if the drive is a permanent drive and if the drive is not
read/only, the reset operation is not performed but a successful
result is returned to the calling process. However, if the drive is
removeable or read/only, the file system determines whether other
processes have open files on the drive. If they do, the drive reset
operation is denied and an error code is returned to the calling
process. If all the files open on the drive belong to the calling
process, the file system performs a "qualified" reset operation for
the drive and returns a successful result to the calling process.
This means that the next time the drive is accessed, the log-in
operation is only performed if a media change is detected on the
drive. The logic flow of the drive reset operation is shown in
Figure 2-1.

If the file system detects a media change on a drive after a
qualified reset, it purges all open files on the drive from the
system lock list and subsequently verifies all open FCBS in file
operations for the owning process (see Section 2.2.9) . The drive is
also relogged-in. In all other cases where a media change is
detected on a drive, the file system performs the following steps:
All open files on the drive are purged from the system lock list,
and all process owning a purged file are flagged for automatic open
FCB verification. The drive is then placed in read/only status. It
is not relogged-in until a drive reset is issued for the drive.
Note: If a process references a file purged from the system lock
list in a BDOS command that requires an open FCB, it is returned an
FCB checksum error by the BDOS file system.

The Access Drive and Free Drive functions perform special
actions under MP/M II. The Access Drive function inserts a "dummy"
open file item into the system lock list for each specified drive.
While that item exists in the system lock list, the drive cannot be
reset by another process. The Free Drive function purges the open
lock list of all items including open file items belonging to the
calling process on the specified drives. Any subsequent reference
to those files by a BDOS function call requiring an open FCB results
in a FCB checksum error return.

All Information Presented here is Proprietary to Digital Research

46

MP/M II Programmer's Guide 2.2.13 Reset, Access and Free Drive

The BDOS function Write Protect Disk function has special
properties under MP/M II. This function can be used to set the
specified drive to read/only. However, MP/M II does not allow a
process to set a drive read/only if another process has an open file
on the drive. This applies to both removeable and permanent drives.
If a process has successfully set a drive read/only, it can prevent
other processes from resetting the drive by either opening a file on
the drive or issuing an Access Drive call for the drive. While the
open file or "dummy" item belonging to the process resides in the
system lock list, no other process can reset the drive to take it
out of read/only status.

 +------------+
 : open files : yes
 : on drive ? :--------+
 +------------+ :
 : :
 : no :
 : :
 : :
 : +---------------+
 : : Drive : yes
 : : removeable ? :----------+
 : +---------------+ :
 : : no :
 : +---------------+ yes :
 : : Drive R/O ? :----------+
 : +---------------+ :
 : : no :
 : : :
 +----------+ +---------------+ +-------------+
 : Reset : : don't reset : : Open files : yes
 : drive : : drive : : belong to :---------+
 +----------+ +---------------+ : another : :
 : : : process ? : :
 : : +-------------+ :
 : : no : no :
 : : +-------------+ :
 : : : Qualified : :
 : : : reset : :
 : : : performed : :
 : : +-------------+ :
 : : : :
 +----------+ : : +----------+
 : Disk : : : : Disk :
 : Reset :----------+-------------------+ : Reset :
 : success : : Denied :
 +----------+ +----------+

Figure 2-1. Disk System Reset

All Information Presented here is Proprietary to Digital Research

47

MP/M II Programmer's Guide 2.2.14 BDOS Error Handling

2.2.14 BDOS Error Handling

The BDOS file system has an extensive error handling
capability. When it detects an error, it can respond in three ways:

1) It can return to the calling process with return codes in
register A, H, and L identifying the error.

2) It can display an error message on the console and abort the
process.

3) It can display an error message on the console and return to
the calling process as in method 1.

The file system handles the majority of errors it detects via method
1. The kinds of errors the file system handles via methods 2 and 3
are called "physical" and "extended" errors. The BDOS Set Error
Mode function determines how the file system handles physical and
extended errors. The BDOS Error Mode can exist in three states. In
the default state, the BDOS displays the error message and
terminates the calling process (method 2). In return error mode,
the BDOS returns control to the calling process with the error
identified in registers A, H, and L (method 1) . In return and
display mode, the BDOS returns control to the calling process with
the error identified in registers A, H, and L, and also displays the
error message at the console (method 3). Both the return modes
ensure that MP/M II does not terminate the process because of a
physical or extended error. The return and display mode also allows
the calling process to take advantage of the built-in error
reporting of the BDOS file system. Physical and extended errors are
displayed on the console in the following format:

BDOS Err on d: error message
BDOS function: nn File: filename.type

where "d" is the name of the drive selected when the error condition
is detected; "error message" identifies the error; "nn" is the BDOS
function number, and "filename.type" identifies the file specified
by the BDOS function. If the BDOS function did not involve a FCB,
the file information is omitted.

The BDOS physical errors are identified by the following error
messages:

o Bad Sector

o Select

o File R/O

o R/O

The "Bad Sector" error results from an error condition returned to
the BDOS from the XIOS module. The file system makes XIOS read and
write calls to execute file related BDOS calls. If the XIOS read or

All Information Presented here is Proprietary to Digital Research

48

MP/M II Programmer's Guide 2.2.14 BDOS Error Handling

write routine detects an error, it returns an error code to the BDOS
resulting in this error.

The "Select" error also results from an error condition
returned to the BDOS from the XIOS module. The BDOS makes an XIOS
Select Disk call prior to accessing a drive to perform a requested
BDOS function. If the XIOS does not support the selected disk, it
returns an error code resulting in this error.

The "File R/O" error is returned whenever a process makes a
write operation to a file with the R/O attribute set.

The 11R/01' error is returned whenever a process makes a write
operation to a disk that is in read/only status. A drive can be
placed in read/only status explicitly with the BDOS Write Protect
Disk function, or implicitly if the file system detects a change in
media on the drive.

The BDOS extended errors are identified by the following error
messages:

• File opened in Read/only Mode

• File Currently Opened

. Close Checksum Error

• Password Error

• File Already Exists

• Illegal ? in FCB

• Open File Limit Exceeded

• No Room in System Lock List

The "File Opened in Read/only Mode" error is returned when a process
attempts to write to a file opened in read/only mode. A file can be
opened in read/only mode explicitly, or opened in read/only mode
implicitly in two ways. If a file is opened from user zero when the
current user number is non-zero, the file is opened in read/only
mode. In addition, if a file is password protected in write mode
and the password is not supplied with the open call, this error is
returned if an attempt is made to write to the file.

The "File Currently open" error is returned when a process
attempts to delete, rename, or modify the attributes of a file
opened by another process. This error is also returned when a
process attempts to open a file in a mode incompatible with the mode
in which the file was opened by another process.

The "Close Checksum Error" message is returned when the BDOS
detects a checksum error in the FCB passed to the file system with a
BDOS Close File call.

All Information Presented here is Proprietary to Digital Research

49

MP/M II Programmer's Guide 2.2.14 BDOS Error Handling

The "File Password" error is returned when the file password is
not supplied, or it is incorrect.

The "File Already Exists" error is returned for the BDOS Make
File and Rename File functions when the BDOS detects a conflict on
file name and type.

The "Illegal ? in FCB" error is returned whenever the BDOS
detects a "?" in the file name or type field of the passed FCB for
the BDOS Rename File, Set File Attributes, Open File, and Make File
functions.

The "Open File Limit Exceeded" error is returned when a process
exceeds the file lock limit specified in the system lock table
during system generation. The Open File, Make File, and Access
Drive functions can return this error.

The "No Room in System Lock List" error is returned when no
room for new entries exists within the system lock list. The
capacity of the system lock list is a system generation parameter.
The Open File, Make File, and Access Drive functions can return this
error.

The following paragraphs describe the error return code
conventions of the BDOS file system functions. Most BDOS file
system functions fall into three categories in regard to return
codes; they return an Error Code, a Directory Code, or an Error
Flag. The error conventions are designed to allow programs written
for earlier versions of CP/M and MP/M to run without modification

The following BDOS functions return an Error Code in register
A.

20. Read Sequential
21. Write Sequential
33. Read Random
34. Write Random
40. Write Random w/Zero Fill
41. Test and Write Record
42. Lock Record
43. Unlock Record

The Error Code definitions for register A are shown in Table 2-8.

All Information Presented here is Proprietary to Digital Research

50

MP/M II Programmer's Guide 2.2-14 BDOS Error Handling

 Table 2-8. BDOS Error Codes

 00 : Function successful
 255 : Physical error : refer to register H
 01 : Reading unwritten data
 No available directory space (Write Sequential)
 02 : No available data block
 03 : Cannot close current extent
 04 : Seek to unwritten extent
 05 : No available directory space
 06 : Random record number out of range
 07 : Record match error (Test and Write)
* 08 : Record locked by another process
 (restricted to files opened in unlocked mode)
 09 : Invalid FCB (previous BDOS read or write call
 returned an error code and invalidated the FCB)
 10 : FCB checksum error
* 11 : Unlocked file unallocated block verify error
 12 : Process record lock limit exceeded
 13 : Invalid File ID
 14 : No room in BDOS internal lock table

* - returned only for files opened in unlocked mode
** - returned only by the Lock Record function
 for files opened in unlocked mode

The following BDOS functions return a Directory Code in
register A:

15. Open File
16. Close File
17. Search For First
18. Search For Next
19. Delete File
22. Make File
23. Rename File
30. Set File Attributes
100. Set Directory Label
101. Read File XFCB
102. Write File XFCB

The Directory Code definitions for register A are shown in Table 2-9

 Table 2-9. BDOS Directory Codes

 00 - 03 : successful function
 255 : unsuccessful function

With the exception of the BDOS search functions, Directory Code
values (0-3) have no significance other than to indicate a
successful result. However, for the search functions, a successful
Directory Code identifies the relative starting position of the

All Information Presented here is Proprietary to Digital Research

51

MP/M II Programmer's Guide 2.2.14 BDOS Error Handling

directory element in the calling process' current DMA buffer.

If the Set BDOS Error Mode function is used to place the BDOS
in return error mode, the following functions return an Error Flag
on physical errors:

14. Select Disk
35. Compute File Size
38. Access Drive
46. Get Disk Free Space
48. Flush Buffers
101. Return Directory Label Data

The Error Flag definition for register A is shown in Table 2-9.

 Table 2-10. BDOS Error Flags
00 : successful function
255 : physical error : refer to register H

The BDOS returns register H values for all three of the above
categories in the following format:

Nl N2

where Nl denotes the high order nibble and N2 denotes the low order
nibble. The following rules govern the assignment of values to Nl
and N2.

Nl For functions that return Error Codes, the BDOS sets Nl to the
number of sectors successfully read or written before the error
is encountered. This information is returned only when a
process uses the Set Multi-Sector Count function to set the
BDOS logical sector count to a value other than one; otherwise
the BDOS sets Nl to zero. Successful read and write functions
also set Nl to zero.

Functions that return a Directory Code or an Error Flag set NI
to zero.

N2 The values contained in N2 identify BDOS physical and extended
errors. The BDOS returns values in N2 only if it is in one of
the return error modes; otherwise, it sets N2 to zero. Table
2-10 lists the physical and extended error codes returned in
N2.

All Information Presented here is Proprietary to Digital Research

52

MP/M II Programmer's Guide 2.2.14 BDOS Error Handling

 Table 2-11. BDOS Physical and Extended Errors
 00 - no error or not a register H error
 01 - Bad Sector : permanent error
 02 - R/O : read/only disk
 03 - R/O File : read/only file

- File Opened in Read/only Mode
 04 - Select : drive select error
 05 - File Currently Open
 06 - Close Checksum Error
 07 - Password Error
 08 - File Already Exists
 09 - Illegal ? in FCB
 10 - Open File Limit Exceeded
 11 - No Room in System Lock List

Note: Register H is equal to zero if the called function is
successful. In addition, the BDOS sets N2 to zero when register A
returns a value other than 255. Except for functions that return
Directory Codes, if register A contains a value of 255 upon return,
N2 identifies the error when the BDOS is in return error mode.

The following two functions represent a special case because
they return an address in registers H and L.

27. Get Addr(Alloc)
31. Get Addr(Disk Parms)

When the BDOS is in return error mode and it detects a physical
error for these functions, it returns to the calling process with
registers A, H, and L all set to 255. otherwise, they return no
error code.

Under MP/M II, the following functions also represent a special
case.

13. Reset Disk System
28. Write Protect Disk
37. Reset Drive

These functions return to the calling process with registers A, H,
and L all set to 255 if another process has an open file or has made
a BDOS Access Drive call that prevents the reset or write protect
operation (see Section 2.2.13). If the BDOS is not in return error
mode, these functions also display an error message identifying the
process that prevented the requested operation.

All Information Presented here is Proprietary to Digital Research

53

MP/M II Programmer's Guide 2.3 Base Page Initialization

2.3 Base Page Initialization

The region of memory located from BASE+OOOOH to BASE+OOFFH is
called the base page of a memory segment (BASE = memory segment base
address) . The base page contains several segments of code and data
that are used by transient programs while running under MP/M II.
The code and data areas are shown below for reference. All
addresses are relative to the beginning of the memory segment.

 Table 2-12. Base Page Areas

 Locations
 from to

Contents

OOOOH - 0002H Contains a jump instruction to the XIOS
process termination entry point at XIOS
BASE + 3. This entry point may also be
used for direct XIOS calls to the XIOS
console status, console input, console
output, and list output primitive
functions.

0003H - 0004H (Reserved)
0005H - 0007H Contains a jump instruction to the BDOS

and XDOS, and serves two purposes: JMP
0005H provides the primary entry point to
the BDOS and XDOS, and LHLD 0006H places
the address field of the jump instruction
in the HL register pair. This value (-l)
is the highest address of the memory
segment available to the transient
program. Note: The RDT program changes
the address field to reflect the reduced
memory size in debug mode.

0008H - 003AH Reserved interrupt locations for Restarts
1 - 7

003BH - 004FH (not currently used - reserved)

0050H Identifies the drive from which the
transient program is read. A value of
zero designates the default drive, a value
of one to sixteen identifies drives A
through P.

0051H - 0052H Contains the address of the password- field
of the first command-tail operand in the
default DMA buffer beginning at 0080H.
The CLI sets this field to zero if no
password for the first command-tail
operand is specified.

All Information Presented here is Proprietary to Digital Research

54

MP/M II Programmer's Guide 2.3 Base Page Initialization

 Table 2-12. (continued)

Location
from to

Contents

0053H Contains the length of the password field
for the first command-tail operand. The
CLI also sets this field to zero if no
password for the first command-tail is
specified.

0054H 0055H Contains the address of the password field
of the second command-tail operand in the
default DMA buffer beginning at 0080H.
The CLI sets this field to zero if no
password for the second command-tail
operand is specified.

0056H Contains the length of the password field
for the second command-tail operand. The
CLI also sets this field to zero if no
password for the second command-tail is
specified.

0057H - 005BH (not currently used - reserved)

005CH - 007BH Default File Control Block (FCB) area 1
initialized by the CLI for a transient
program from the first command-tail
operand of the command line (if it
exists).

006CH - 007BH Default File Control Block (FCB) area 2
initialized by the CLI for a transient
program from the second command-tail
operand of the command line (if it
exists). Note: this area overlays the
last 16 bytes of default FCB area 1. To
use the information in this area, the
transient program must copy it to another
location before using FCB area 1.

007CH - 007CH Current record position of default FCB
area 1. This field is used with default
FCB area 1 in sequential record
processing.

007DH - 007FH optional default random record position.
This field is an extension of default FCB
area 1 used in random record processing.

0080H - OOFFH Default 128-byte disk buffer (also filled
with the command tail when the CLI loads a
transient program).

All Information Presented here is Proprietary to Digital Research

55

MP/M II Programmer's Guide 2.3 Base Page Initialization

The CLI initializes the base page prior to initiating a
transient program. The fields at BASE+0050H and above are
initialized from the command line invoking the transient program.
The command line format of a transient program usually takes the
form:

 <command> <command tail>

where

<command> => {d:}filename{;password}

<command tail> => (no command tail)
=> <file spec>
=> <file spec><delimiter><file spec>

<file spec> => {d:}filename{.type}{;password}

If a drive {d:} is specified in the <command> field, the CLI
initializes the command drive field at 0050H to the drive index (A =
1, ... , P = 16). Otherwise, it sets the field to zero.

The default FCB at 005CH is defined if a command tail is
entered. otherwise, the fields at 5CH, 68H to 6BH are set to binary
zeros, the fields from 5DH to 67H are set to blanks. The fields at
51H through 53H are set if a password is specified for the first
<file spec> of the command tail. If not, these fields are set to
zero.

The default FCB at 006Ch is defined if a second <file spec>
exists in the command tail. otherwise, the fields at 6CH, 78H to
7Bh are set to binary zeros, the fields from 5DH to 67H are set to
blanks. The fields at 54H through 56H are set if a password is
specified for the second <file spec> of the command tail. If not,
these fields are set to zero.

Transient programs often use the default FCB at 005CH for file
operations. This FCB may even be used for random file access
because the three bytes starting at 007DH are available for this
purpose. However, a transient program must copy the contents of the
default FCB at 006CH to another area before using the default FCB at
005CH, because an open operation for the default FCB at 005CH
overwrites the FCB data at 006CH.

The default DMA address for transient programs is BASE+0080H.
The CLI also initializes this area to contain the command tail of
the command line. The first position contains the number of
characters in the command line, followed by the command line
characters. The command line characters are preceded by a leading
blank and are translated to ASCII upper-case. Because the 128-byte
region beginning at BASE+0080H is the default DMA, the BDOS file
system moves 128-byte records to this area with read operations and
accesses 128-byte records from this area with write operations. The
transient program must extract the command tail information from

All Information Presented here is Proprietary to Digital Research

56

MP/M II Programmer's Guide 2.3 Base Page Initialization

this buffer before performing file operations unless it explicitly
changes the DMA address with the BDOS Set DMA Address function. The
base page fields of 0051H through 0056H locate the password fields
of the first two file specifications in the command tail if they
exist. These fields are provided so that transient programs are not
required to parse the command tail for password fields. However,
the transient program must save the password, or change the DMA
address before performing file operations.

The following example illustrates the initialization of the
command line fields of the base page. Assuming the following
command line is typed at the console:

A:PROGRAM B:FILE.TYP;PASS C:FILE.TYP;PASSWORD

A hexadecimal dump of BASE+0050H to BASE+OOA5H would show the base
page initialization performed by the CLI.

0050H: 01 8D 00 04 9D 00 08 00 00 00 00 00 02 46 49 4CFIL
0060H: 45 20 20 20 20 54 59 50 00 00 00 00 03 46 49 4C E . .TYP. .FIL
0070H: 45 20 20 20 20 54 59 50 00 00 00 00 00 00 00 00 E . .TYP. .
0080H: 24 20 42 3A 46 49 4C 45 2E 54 59 50 3B 50 41 53 . B:FILE.TYP;PAS
0090H: 53 20 43 3A 46 49 4C 45 2E 54 59 50 3B 50 41 53 S C:FILE.TYP;PAS
OOAOH: 53 57 4F 52 44 00 SWORD.

All Information Presented here is Proprietary to Digital Research

57

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 0

2.4 BDOS Function Calls

FUNCTION 0: SYSTEM RESET

Entry Parameters:
Register C: OOH

The System Reset function terminates the calling process,
releasing all system resources owned by the process. In general, a
process can own one or more of the following resources: memory
segments, consoles, printers, mutual exclusion messages, and system
lock list entries that record open files and locked records. All
released resources become available to other processes on the
system. For example, if a system console is released by a
terminating process, it is usually given back to the console's TMP.
This occurs when the TMP is the highest priority process waiting for
the console.

Normally, the System Reset function operates the same way under
MP/M II as it does under CP/M: the calling program terminates and
the user receives the command prompt. Note that the disk subsystem
is not reset by System Reset under MP/M II.

For transient programs, System Reset is equivalent to a jump to
BASE+O.

FUNCTION 1: CONSOLE INPUT

Entry Parameters:
Register C: 01H

Returned Value:
Register A: ASCII Character

The Console Input function reads the next character from the
console device to register A. Most graphic characters, including
carriage return, line feed, and backspace (CONTROL-H) are echoed to
the console. Tab characters (CONTROL-I) are expanded in columns of
8 characters. However, the terminate process (CONTROL-C) and detach
process (CONTROL-D) characters are intercepted by the BDOS (see
Section 2.1). The BDOS does not return control to the calling
process until a character is typed, thus suspending execution if a
character is not ready.

All Information Presented here is Proprietary to Digital Research

58

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 1

MP/M II performs an XDOS Attach Console call (function 146) for
the calling process if it does not own the console (see Section
2.1).

FUNCTION 2: CONSOLE OUTPUT

Entry Parameters:
Register C: 02H
Register E: ASCII Character

The Console Output function sends the ASCII character from
register E to the console device. It expands tab characters
(CONTROL-I) in columns of 8 characters, and checks for start scroll
(CONTROL-S) , stop scroll (CONTROL-Q) , terminate process (CONTROL-C) ,
and detach process (CONTROL-D) (see Section 2.1).

MP/M II performs an XDOS Attach Console call (function 146) for
the calling process if it does not own the console (see Section
2.1).

FUNCTION 3: RAW CONSOLE INPUT

Entry Parameters:
Register C: 03H

Returned Value:
Register A: ASCII Character

The Raw Console Input function reads the next console character
to register A. It reads all characters including control
characters, without any testing or interpretation.

MP/M II performs an XDOS Attach Console call (Function 146) for
the calling process if it does not own the console (see Section
2.1).

MP/M II does not support the CP/M Reader Input function because
the system treats all character I/O devices such as the reader/punch
as consoles.

All Information Presented here is Proprietary to Digital Research

59

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 4

FUNCTION 4: RAW CONSOLE OUTPUT

Entry Parameters:
Register C: 04H
Register E: ASCII Character

The Raw Console Output function sends the ASCII character from
register E to the console device. It does not test the output
character; that is, tabs are not expanded and no checks are made
for control characters.

MP/M II performs an XDOS Attach Console call (function 146) for
the calling process if it does not own the console (see Section
2.1).

MP/M II does not support the CP/M Punch Output function.

FUNCTION 5: LIST OUTPUT

Entry Parameters:
Register C: 05H
Register E: ASCII Character

The List Output function sends the ASCII character in register
E to the list device.

MP/M II performs an XDOS Attach List call (function 158) for
the calling process if it does not own the list device (see Section
2.1).

All Information Presented here is Proprietary to Digital Research

60

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 6

FUNCTION 6: DIRECT CONSOLE I/O

Entry Parameters:
Register C: 06H
Register E: OFFH (input/

 status) or
OFEH (status)or
OFDH (input)
char (output)

Returned Value:
Register A: char or status

(no value)

MP/M II supports direct console I/O for those specialized
applications where unadorned console input and output is required.
The programmer should use direct console I/O carefully because it
bypasses all the normal control character functions. Programs that
perform direct I/O through the BIOS under previous releases of CP/M
should be changed to use direct I/O under the new BDOS so that they
can be fully supported under future releases of MP/M and CP/M.

A Process calls Function 6 by passing one of four different
values in register E. These are summarized in Table 2-13, below.

 Table 2-13. Function 6 Entry Parameters

Register
E value

Meaning

OFFH console input/status command, returns
an input character; if no character
is ready, a value of zero is
returned.

OFEH console status command (On return,
register A contains 00 if no
character is ready; otherwise it
contains FFH.)

OFDH console input command, returns an
input character; this function will
suspend the calling process until a
character is ready.

ASCII Function 6 assumes register E
Character contains a valid ASCII character and
sends it to the console.

All Information Presented here is Proprietary to Digital Research

61

MP/M II Programmer-Is Guide 2.4 BDOS Calls: Function 6

Note: MP/M II is not compatible with MP/M 1.1 in regard to
Function 6 with a parameter of E=FFH. Under MP/M 1.1 the direct
console input command (E=FFH) suspends the calling process until a
character is typed, whereas MP/M II returns immediately with a zero
if no character is available. To upgrade programs using Function 6
with E=FFH under MP/M 1.1 to MP/M II, the direct input command
(E=FDH) must be used. The change from MP/M 1.1 was required to
achieve consistent direct console I/O handling between CP/M, MP/M
II, CP/M-86 and MP/M-86.

MP/M II performs an XDOS Attach Console call (Function 146) for
the calling process if it does not own the console (see Section
2.1) . MP/M II performs a dispatch if a direct console input/status
command (E=FFH) is made which returns a zero indicating that a
character is not ready.

FUNCTION 7: GET I/O BYTE

MP/M II does not support the Get I/O Byte function.

FUNCTION 8: SET I/O BYTE

MP/M II does not support the Set I/O Byte function.

FUNCTION 9: PRINT STRING

Entry Parameters:
Register C: 09H
Registers DE: String Address

The Print String function sends the character string stored in
memory at the location addressed by register pair DE to the console
until it encounters a "$" in the string. Function 9 expands tab
characters (CONTROL-I) in columns of 8 characters. It also checks
for start scroll (CONTROL-S) , stop scroll (CONTROL-Q) , terminate

All Information Presented here is Proprietary to Digital Research

62

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 9

process (CONTROL-C) and detach process (CONTROL-D) (see Section
2.1).

MP/M II performs an XDOS Attach Console call (Function 146) for
the calling process if it does not own the console (see Section
2.1).

FUNCTION 10: READ CONSOLE BUFFER

Entry Parameters:
Register C: OAH
Registers DE: Buffer Address

Returned Value:
Console Characters in Buffer

The Read Console Buffer function reads a line of edited console
input to a buffer addressed by register pair DE. It terminates
input when the buffer is filled or when it encounters a return
(CONTROL-M) or a line feed (CONTROL-J) character. The input buffer
addressed by DE has the following format:

 DE: +0 +1 +2 +3 +4 +5 +6 +7 +8 +n
 +---
 :mx:nc:cl:c2:c3:c4:c5:c6:c7: . . . :??:
 +---

where "mx" is the maximum number of characters which the buffer
holds, and "nc" is the number of characters placed in the buffer.
The characters entered by the operator follow the "nc" value. The
value "mx" must be set, prior to making a Function 10 call and may
range in value from 1 to 255. Setting "mx" to zero is equivalent
to setting "mx" to one. The value "nc" is returned to the calling
process and may range from zero to "mx". If nc < mx, then
uninitialized positions follow the last character, denoted by "??"
in the above figure. Note that a terminating return or line feed
character is not placed in the buffer and not included in the count
"nc".

All Information Presented here is Proprietary to Digital Research

63

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 10

Function 10 recognizes the edit control characters summarized
in Table 2-14, below.

 Table 2-14. Console Buffer Edit Control Characters

Character Edit Control Function

rub/del removes and echoes the last character
CONTROL-C reboots when at the beginning of line
CONTROL-E causes physical end of line
CONTROL-H backspaces one character position
CONTROL-J (line feed) terminates input line
CONTROL-M (return) terminates input line
CONTROL-P echoes console output to the list device
CONTROL-R retypes the current line after new line
CONTROL-U removes current line after new line
CONTROL-X backspaces to beginning of current line

The control functions that return the cursor to the leftmost
position (e.g., CONTROL-X) do so only to the column position where
the prompt ended (in earlier releases, the cursor returned to the
extreme left margin). This convention simplifies data input and
line correction.

MP/M II performs an XDOS Attach Console call (Function 146) for
the calling process if it does not own the console (see Section
2.1).

All Information Presented here is Proprietary to Digital Research

64

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 11

FUNCTION 11: GET CONSOLE STATUS

Entry Parameters:
Register C: OBH

Returned Value:
Register A: Console Status

The Get Console Status function checks to see if a character
has been typed at the console. If a character is ready, Function 11
returns the value 01H in register A. If a character is not ready,
it returns a value of OOH.

MP/M II performs an XDOS Attach Console call (Function 146) for
the calling process if it does not own the console (see Section
2.1).

FUNCTION 12: RETURN VERSION NUMBER

Entry Parameters:
Register C: OCH

Returned Value:
Registers HL: Version Number

The Return Version Number function provides information that
allows version independent programming. It returns a two-byte value
in register pair HL: H contains 01H for MP/M and L contains 30H,
the BDOS file system version number. Function 12 is useful for
writing applications programs that provide both random and
sequential file access, and disabling the random access when
operating under early versions of CP/M.

XDOS Function 163 can be called to obtain the MP/M version
number.

All Information Presented here is Proprietary to Digital Research

65

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 13

FUNCTION 13: RESET DISK SYSTEM

Entry Parameters:
Register C: ODH

Returned Value:
Register A: Return Code

The Reset Disk System function restores the file system to a
reset state where all the disk drives are set to read/write (see
Functions 28 and 29), the default disk is set to drive A, and the
default DMA address is reset to BASE+0080H. This function can be
used, for example, by an application program that requires disk
changes during operation. Function 37 (Reset Drive) can also be
used for this purpose.

This function is conditional under MP/M II. If another process
has an open file on a removeable or read/only drive, the disk reset
is denied and no drives are reset.

Upon return, if the reset operation is successful, register A
is set to zero. Otherwise, register A is set to OFFH (255 decimal) .
If the BDOS error mode is not Return Error mode (see Function 45),
then an error message is displayed at the console, identifying a
process owning an open file.

FUNCTION 14: SELECT DISK

Entry Parameters:
Register C: OEH
Register E: Selected Disk

Returned Value:
Register A: Error Flag
Register H: Physical Error

The Select Disk function designates the disk drive named in
register E as the default disk for subsequent BDOS file operations.
Register E is set to 0 for drive A, 1 for drive B, and so-forth
through 15 for drive P in a full 16 drive system. In addition,
function 14 logs in the designated drive if it is currently in the
reset state. Logging-in a drive activates the drive's directory
until the next disk system reset or drive reset operation.

All Information Presented here is Proprietary to Digital Research

66

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 14

FCBs that specify drive code zero (dr = OOH) automatically
reference the currently selected default drive. FCBs with drive
code values between 1 and 16, however, ignore the selected default
drive and directly reference drives A through P.

Upon return, register A contains a zero if the select operation
was successful. If a physical error was encountered, the select
function performs different actions depending on the BDOS error mode
(see Function 45) . If the BDOS error mode is in the default mode, a
message identifying the error is displayed at the console and the
calling process is terminated. Otherwise, the select function
returns to the calling process with register A set to OFFH and
register H set to one of the following physical error codes:

01 : Permanent error
04 : Select error

FUNCTION 15: OPEN FILE

Entry Parameters:
Register C: OFH
Registers DE: FCB Address

Returned Value:
Register A: Directory Code
Register H: Physical or

 Extended Error

The Open File function activates the FCB for a file that exists
in the disk directory under the currently active user number or user
zero. The calling process passes the address of the FCB in register
pair DE, with byte 0 of the FCB specifying the drive, bytes 1
through 11 specifying the filename and type, and byte 12 specifying
the extent. Normally, byte 12 of the FCB is initialized to zero.
Interface attributes f5' and W of the FCB specify the mode in
which the file is to be opened as shown below:

f5' = 0, f6' = 0 - Open in locked mode (default)
f5' = 1, f6’ = 0 - open in unlocked mode
f5' = 0 or 1, f6’ = 1 - Open in read/only mode

If the file is password protected in Read mode, the correct password
must be placed in the first eight bytes of the current DMA or have
been previously established as the default password (see Function
106). Note that the current record field of the FCB ("cr") must be
zeroed by the calling process if the file is to be accessed
sequentially from the first record.

All Information Presented here is Proprietary to Digital Research

67

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 15

The Open File function performs the following steps for files
opened in locked or read/only mode. If the current user is non
zero, and the file to be opened does not exist under the current
user number, the open function searches user zero for the file. If
the file exists under user zero, and has the system attribute (t2')
set, the file is opened under user zero. The open mode is
automatically set to read/only when this is done.

The Open File function also performs the following action for
files opened in locked mode when the current user number is zero.
If the file exists in the directory under user zero, and has both
the system attribute (t2’) set and the read/only attribute (tl')
set, the open mode is automatically set to read/only. Note that
read/only mode implies the file can be concurrently accessed by
other processes if they open the file in read/only mode.

If the open operation is successful, the user's FCB is
activated for read and write operations as follows. The relevant
directory information is copied from the matching directory FCB into
bytes dO through dn of the FCB. A checksum is computed and assigned
to the FCB. BDOS functions that require an open FCB (e.g. Read
Sequential) verify that the FCB checksum is valid before performing
their operation. if the file is opened in unlocked mode, bytes rO
and rl of the FCB are set to a two byte value called the File ID.
The File ID is a required parameter for the BDOS Lock Record and
Unlock Record functions. If the open mode is forced to read/only
mode, interface attribute f8' is set to one in the user's FCB. In
addition, if the referenced file is password protected in Write mode
and the correct password was not passed in the DMA or did not match
the default password, interface attribute f7' is set to one. Write
operations are not supported for an activated FCB if interface
attribute f7' or f8' is true.

The BDOS file system also creates an open file item in the
system lock list to record a successful open file operation. While
this item exists, no other process can delete, rename, or modify the
file's attributes. In addition, this item prevents other processes
from opening the file if the file was opened in locked mode. It
also requires that other processes match the file's open mode if the
file was opened in unlocked or read/only mode. Normally, this item
remains in the system lock list until the file is permanently closed
or the process that opened the file terminates.

When the open operation is successful, the open function also
makes an Access date and time stamp for the opened file when the
following conditions are satisfied: the reference drive has a
directory label that requests Access date and time stamping, the
opened file has an XFCB, and the referenced drive is read/write.

Upon return, the open function returns a directory code in
register A with the value 0 through 3 if the open was successful, or
FFH (255 decimal) if the file was not found. Register H is set to
zero in both of these cases. If a physical or extended error was
encountered, the open function performs different actions depending
on the BDOS error mode (see Function 45) . If the BDOS error mode is

All Information Presented here is Proprietary to Digital Research

68

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 19

in the default mode, a message identifying the error is displayed at
the console and the process is terminated. otherwise, the open
function returns to the calling process with register A set to OFFH
and register H set to one of the following physical or extended
error codes:

01 : Permanent error
04 : Select error
05 : File is open by another process or by the

current process in an incompatible mode
07 : File password error
09 : ? in the FCB file name or type field
10 : Process open file limit exceeded
11 : No room in the system lock list

FUNCTION 16: CLOSE FILE

Entry Parameters:
Register C: 10H
Registers DE: FCB Address

Returned Value:
Register A: Directory Code
Register H: Physical or

 Extended Error

The Close File function performs the inverse of the open file
function. The calling process passes the address of an FCB in the
register pair DE. The referenced FCB must have been previously
activated by a successful open or make function call (see functions
15 and 22). Interface attribute f5l specifies how the file is to be
closed as shown below:

f5l = 0 - Permanent close (default mode)
f5l = 1 - Partial close

The close function first verifies that the referenced FCB has a
valid checksum. If the checksum is valid and the referenced FCB
contains new information because of write operations to the FCB, the
close function permanently records the new information in the
referenced disk directory. Note that the FCB does not contain new
information and the directory update step is bypassed if only read
and/or update operations have been made to the referenced FCB.
However, the close function always attempts to locate the FCB's
corresponding entry in the directory, and returns an error if the
directory entry is not found.

All Information Presented here is Proprietary to Digital Research

69

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 16

If the close function successfully performs the above steps,
and if interface attribute f5’ indicates that the close is
permanent, the close function removes the file's item from the
system lock list. If the FCB was opened in unlocked mode, it also
purges all record lock items belonging to the file from the system
lock list. Because the file's lock list item is removed, the close
function invalidates the FCB's checksum to ensure the referenced FCB
is not subsequently used with BDOS functions that require an open
FCB (e.g. Write Sequential).

The close function also makes an Update date and time stamp for
the closed file when the following conditions are satisfied: the
reference drive has a directory label that requests Update date and
time stamping, the referenced file has an XFCB, the referenced drive
is read/write, and a write operation to the file was made since the
FCB was opened. None of these steps are performed for partial close
operations (f5’ = 1).

Upon return, the close function returns a Directory Code in
register A with the value 0 to 3 if the close was successful, or FFH
(255 Decimal) if the file was not found. Register H is set to zero
in both of these cases. If a physical or extended error was
encountered, the close function performs different actions depending
on the BDOS error mode (see Function 45) . If the BDOS error mode is
in the default mode, a message identifying the error is displayed at
the console and the calling process is terminated. Otherwise, the
close function returns to the calling process with register A set to
OFFH and register H set to one of the following physical or extended
error codes:

01 : Permanent error
02 : Read/only disk
04 : Select error
06 : FCB checksum error

All Information Presented here is Proprietary to Digital Research

70

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 17

FUNCTION 17: SEARCH FOR FIRST

Entry Parameters:
Register C: 11H
Registers DE: FCB Address

Returned Value:
Register A: Directory Code
Register H: Physical Error

Search For First scans the directory for a match with the FCB
addressed by register pair DE. Two types of searches can be
performed. For standard searches, the calling process initializes
bytes 0 through 12 of the referenced FCB, with byte 0 specifying the
drive directory to be searched, bytes 1 through 11 specifying the
file or files to be searched for, and byte 12 specifying the extent.
Normally byte 12 is set to zero. An ASCII question mark (63
decimal, 3F hex) in any of the bytes 1 through 12 matches all
entries on the directory in the corresponding position. This
facility, called ambiguous reference, can be used to search for
multiple files on the directory. When called in the standard mode,
the search function scans for the first file entry in the specified
directory that matches the FCB and belongs to the current user
number.

The search function also initializes the Search For Next
function. After the search function has located the first directory
entry matching the referenced FCB, the Search For Next function can
be called repeatedly to locate all remaining matching entries. In
terms of execution sequence, however, the Search For Next call must
either follow a Search For First or Search For Next call with no

other intervening BDOS disk-related function calls.

If byte 0 of the referenced FCB is set to a question mark, the
search function ignores the remainder of the referenced FCB and
locates the first directory entry residing on the current default
drive. All remaining directory entries can be located by making
multiple Search For Next calls. This type of search operation is
not normally made by application programs, but it does provide
complete flexibility to scan all current directory values. Note
that this type of search operation must be performed to access a
drive's Directory Label (see Section 2.2.5).

Upon return, the search function returns a Directory Code in
register A with the value 0 to 3 if the search was successful, or
OFFH (255 Decimal) if a matching directory entry was not found.
Register H is set to zero in both of these cases. For successful
searches, the current DMA is also filled with the directory record
containing the matching entry, and the relative starting position is
A * 32 (i.e. rotate the A register left 5 bits, or ADD A five

All Information Presented here is Proprietary to Digital Research

71

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 17

times). Although not normally required for application programs,
the directory information can be extracted from the buffer at this
position.

If a physical error was encountered, the search function
performs different actions depending on the BDOS error mode (See
function 45). If the BDOS error mode is in the default mode, a
message identifying the error is displayed at the console and the
calling process is terminated. Otherwise, the search function
returns to the calling process with register A set to OFFH and
register H set to one of the following physical error codes:

01 Permanent error
04 Select error

FUNCTION 18: SEARCH FOR NEXT

Entry Parameters:
Register C: 12H

Returned Value:
Register A: Directory Code
Register H: Physical Error

The Search For Next function is identical to the Search For
First function, except that the directory scan continues from the
last entry that was matched. Function 18 returns a Directory code
in register A, analogous to Function 17. Note: In execution
sequence, a Function 18 call must follow either a Function 17 or
another Function 18 call with no other intervening BDOS disk-related
function calls.

All Information Presented here is Proprietary to Digital Research

72

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 19

FUNCTION 19: DELETE FILE

Entry Parameters:
Register C: 13H
Registers DE: FCB Address

Returned Value:
Register A: Directory Code
Register H: Extended or

Physical Error

The Delete File function removes files and/or XFCBs that match
the FCB addressed in register pair DE. The filename and type may
contain ambiguous references (i.e., question marks in bytes fl
through t3) , but the "dr" byte cannot be ambiguous, as it can in the
Search and Search Next functions. Interface attribute f5’ specifies
the type of delete operation to be performed as shown below:

f5' = 0 - Standard Delete (default mode)
f5' = 1 - Delete only XFCB's

If any of the files specified by the referenced FCB are password
protected, the correct password must be placed in the first eight
bytes of the current DMA buffer, or have been previously established
as the default password (see Function 106).

For standard delete operations, the delete function removes all
directory entries belonging to files that match the referenced FCB.
All disk directory and data space owned by the deleted files is
returned to free space, and becomes available for allocation to
other files. Directory XFCBs that were owned by the deleted files
are also removed from the directory. If interface attribute f5' of
the FCB is set to 1, Function 19 deletes only the directory XFCBs
matching the referenced FCB. Note: If any of the files matching
the input FCB specification fail the password check, are read/only,
or are currently open by another process, then the delete function
deletes no files or XFCBs. This applies to both types of delete
operations.

A process can delete a file that it currently has open if the
file was opened in locked mode. However, a checksum error is
returned if the process makes a subsequent reference to the file
with a BDOS function requiring an open FCB. Files open in read/only
or unlocked mode cannot be deleted by any process.

Upon return, the delete function returns a Directory Code in
register A with the value 0 to 3 if the delete was successful, or
OFFH (255 Decimal) if no file matching the referenced FCB was found.
Register H is set to zero in both of these cases. If a physical or
extended error was encountered, the delete function performs

All Information Presented here is Proprietary to Digital Research

73

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 19

different actions depending on the BDOS error mode (see Function
45). If the BDOS error mode is the default mode, a message
identifying the error is displayed at the console and the calling
process is terminated. Otherwise, the delete function returns to
the calling process with register A set to OFFH and register H set
to one of the following physical or extended error codes:

01 : Permanent error
02 : Read/only disk
03 : Read/only file
04 : Select Error
05 : File open by another process or open

in read/only or unlocked mode
07 : File password error

All Information Presented here is Proprietary to Digital Research

74

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 20

FUNCTION 20: READ SEQUENTIAL

Entry Parameters:
Register C: 14H
Registers DE: FCB Address

Returned Value:
Register A: Error Code
Register H: Physical Error

The Read Sequential function reads the next one to sixteen
128-byte records from a file into memory beginning at the current
DMA address. The BDOS Multi-Sector Count (see Function 44)
determines the number of records to be read. The default is one
record. The FCB addressed by register pair DE must have been
previously activated by an Open or Make function call.

Function 20 reads each record from byte "cr" of the extent,
then automatically increments the "cr" field to the next record
position . If the "cr" field overflows then the function
automatically opens the next logical extent and resets the "cr"
field to 0 in preparation for the next read operation. The calling
process must set the "cr" field to 0 following the open call if the
intent is to read sequentially from the beginning of the file.

All Information Presented here is Proprietary to Digital Research

75

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 20

Upon return, the Read Sequential function sets register A to
zero if the read operation was successful. otherwise, register A
contains an error code identifying the error as shown below:

01 : Reading unwritten data (end of file)
09 : Invalid FCB
10 : FCB checksum error
11 : Unlocked file verification error
255 : Physical error; refer to register H

Error Code 01 is returned if no data exists at the next
record position of the file. Normally, the no data situation is
encountered at the end of a file. However, it can also occur if an
attempt is made to read a data block which has not been previously
written, or an extent which has not been created. These situations
are usually restricted to files created or appended with the BDOS
random write functions (see Functions 34 and 40).

Error Code 09 is returned if the FCB was invalidated by a
previous BDOS random read or write call that returned an error. A
Read Random call (Function 33) for an existing record in the file,
can be made to revalidate the FCB.

Error Code 10 is returned if the referenced FCB failed the
FCB checksum test.

Error Code 11 is returned if the BDOS cannot locate the FCB's
directory entry when attempting to verify that the referenced FCB
contains current information. This error is only returned for files
open in unlocked mode.

Error Code 255 is returned if a physical error was
encountered and the BDOS error mode is Return Error mode or Return
and Display Error mode (see Function 45) . If the error mode is the
default mode, a message identifying the physical error is displayed
at the console and the calling process is terminated. When a
physical error is returned to the calling process, it is identified
by the four low-order bits of register H as shown below:

01 : Permanent error
04 : Select error

The Read Sequential function also sets the four high-order
bits of register H on all error returns when the BDOS Multi-Sector
Count is greater than one. In this case, the four bits contain an
integer set to the number of records successfully read before the
error was encountered. This value can range from 0 to 15. The
high-order four bits of register H are always zeroed when the Multi
Sector Count is equal to one.

All Information Presented here is Proprietary to Digital Research

76

MY/M 11 Programmer's Guide 2.4 BDOS Calls: Function 21

FUNCTION 21: WRITE SEQUENTIAL

Entry Parameters:
Register C: 15H
Registers DE: FCB Address

Returned Value:
Register A: Error Code
Register H: Physical Error

The Write Sequential function writes one to sixteen 128-byte
data records beginning at the current DMA address into the file
named by the FCB addressed in register pair DE. The BDOS Multi
Sector Count (see Function 44) determines the number of 128 byte
records that are written. The default is one record. The
referenced FCB must have been previously activated by a BDOS Open or
Make function call.

Function 21 places the record into the file at the position
indicated by the "cr" byte of the FCB, and then automatically
increments the "cr" byte to the next record position. If the "cr"
field overflows, the function automatically opens or creates the
next logical extent and resets the "cr" field to 0 in preparation
for the next write operation. If Function 21 is used to write to an
existing file, then the newly written records overlay those already
existing in the file. The calling process must set the "cr" field
to 0 following an Open or Make call if the intent is to write
sequentially from the beginning of the file.

Upon return, the Write Sequential function sets register A to
zero if the write operation was successful. otherwise, register A
contains an error code identifying the error as shown below:

01 No available directory space
02 No available data block
08 Record locked by another process
09 Invalid FCB
10 FCB checksum error
11 Unlocked file verification error
255 Physical error : refer to register H

Error Code 01 is returned when the write function attempts to
create a new extent that requires a new directory entry and no
available directory entries exist on the selected disk drive.

Error Code 02 is returned when the write command attempts to
allocate a new data block to the file and no unallocated data blocks
exist on the selected disk drive.

All Information Presented here is Proprietary to Digital Research

77

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 21

Error Code 08 is returned if the write function attempts to
write to a record locked by another process. This error is only
returned for files open in unlocked mode.

Error Code 09 is returned if the FCB was invalidated by a
previous BDOS random read or write call that returned an error. A
Read Random call (Function 33) for an existing record in the file
can be made to revalidate the FCB.

Error Code 10 is returned if the referenced FCB failed the FCB
checksum test.

Error Code 11 is returned if the BDOS cannot locate the FCB's
directory entry when attempting to verify that the referenced FCB
contains current information. This error is only returned for files
open in unlocked mode.

Error Code 255 is returned if a physical error was encountered
and the BDOS error mode is Return Error mode or Return and Display
Error mode (see Function 45). If the error mode is the default
mode, a message identifying the physical error is displayed at the
console and the calling process is terminated. When a physical
error is returned to the calling process, it is identified by the
four low-order bits of register H as shown below:

01 : Permanent error
02 : Read/only disk
03 : Read/only file or

File open in read/only mode or
File password protected in Write mode

04 : Select error

The Write Sequential function also sets the four high-order bits of
register H on all error returns when the BDOS Multi-Sector Count is
greater than one. In this case, the four bits contain an integer
set to the number of records successfully written before the error
was encountered. This value can range from zero to 15. The high
order four bits of register H are always zeroed when the Multi
Sector Count is equal to one.

All Information Presented here is Proprietary to Digital Research

78

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 22

FUNCTION 22: MAKE FILE

Entry Parameters:
Register C: 16H
Registers DE: FCB Address

Returned Value:
Register A: Directory Code
Register H: Physical or

 Extended Error

The Make File function creates a new directory entry for a file
under the current user number. It also creates an XFCB for the file
if the referenced drive has a Directory Label that invokes automatic
creation of XFCBs. The calling process passes the address of the
FCB in the register pair DE, with byte 0 of the FCB specifying the
drive, bytes 1 through 11 specifying the filename and type, and byte
12 set to the extent number. Normally, byte 12 is set to zero.
Byte 32 of the FCB (the "cr" field) must be initialized to zero
(before or after the Make call) if the intent is to write
sequentially from the beginning of the file.

Interface attribute f5' specifies the mode in which the file is
to be opened. Interface attribute f6l specifies whether a password
is to be assigned to the created file. The interface attributes are
summarized below:

f5’ = 0 - Open in locked mode (default mode)
f5’ = 1 - Open in unlocked mode
f6’ = 0 - Don't assign password (default)
f6’ = 1 - Assign password to created file

When attribute W is set to 1, the calling process must place the
password in the first 8 bytes of the current DMA buffer and set byte
9 of the DMA buffer to the password mode (See Function 102).

The Make function returns with an error if the referenced FCB
names a file that currently exists in the directory under the
current user number. A preceding delete operation can be made if
there is any possibility of duplication.

If the make operation is successful, it activates the
referenced FCB for file operations (opens the FCB) and initializes
both the directory entry and the referenced FCB to an empty file. A
checksum is computed and assigned to the FCB. BDOS functions that
require an open FCB (e.g. Write Random) verify that the FCB checksum
is valid before performing their operation. If the open mode is
unlocked, bytes rO and rl are set to a two byte value called the
File ID. The File ID is a required parameter for the BDOS Lock
Record and Unlock Record functions. Note that the Make File

All Information Presented here is Proprietary to Digital Research

79

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 22

function initializes all file attributes to zero.

The BDOS file system also creates an open file item in the
system lock list to record a successful make file operation. While
this item exists, no other process can delete, rename, or modify the
file's attributes.

If the referenced drive contains a Directory Label that invokes
automatic creation of XFCBs, the make function creates an XFCB and
makes a Creation date and time stamp for the created file. Note
that the Creation time stamp is not made (the XFCB Creation time
stamp field is set to zeroes) if an XFCB is assigned to a file by
the BDOS Write File XFCB call. If interface attribute f6’ of the
FCB is 1, the make function also assigns the password passed in the
DMA to the file.

Upon return, the make function returns a directory code in
register A with the value 0 through 3 if the make operation was
successful, or OFFH (255 decimal) if no directory space was
available. Register H is set to zero in both of these cases. If a
physical or extended error was encountered, the make function
performs different actions depending on the BDOS error mode (see
Function 45) . If the BDOS error mode is the default mode, a message
identifying the error is displayed at the console and the calling
process is terminated. Otherwise, the make function returns to the
calling process with register A set to OFFH and register H set to
one of the following physical or extended error codes:

01 : Permanent error
02 : Read/only disk
04 : Select error
08 : File already exists
09 : ? in filename or type field
10 : Process open file limit exceeded
11 : No room in the system lock list

All Information Presented here is Proprietary to Digital Research

80

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 23

FUNCTION 23: RENAME FILE

Entry Parameters:
Register C: 17H
Registers DE: FCB Address

Returned Value:
Register A: Return Code
Register H: Physical or

 Extended Error

The Rename function uses the FCB addressed by register pair DE
to change all directory entries of the file specified by the
filename in the first 16 bytes of the FCB to the filename in the
second 16 bytes. If the file specified by the first filename is
password protected, the correct password must be placed in the first
eight bytes of the current DMA buffer, or have been previously
established as the default password (see Function 106). The calling
process must also ensure that the filenames specified in the FCB are
valid and unambiguous, and that the new filename does not already
exist on the drive. Function 23 uses the "dr" code at byte 0 of the
FCB to select the drive. The drive code at byte 16 of the FCB is
ignored.

A process can rename a file that it has open if the file was
opened in locked mode. However, if the process subsequently
references the file with a BDOS function requiring an open FCB, a
checksum error is returned. A file open in read/only or unlocked
mode cannot be renamed by any process.

Upon return, the rename function returns a Directory Code in
register A with the value 0 to 3 if the rename was successful, or
OFFH (255 Decimal) if the file named by the first filename in the
FCB was not found. Register H is set to zero in both of these
cases. If a physical or extended error was encountered, the rename
function performs different actions depending on the BDOS error mode
(see Function 45). If the BDOS error mode is the default mode, a
message identifying the error is displayed at the console and the
process is terminated. Otherwise, the rename function returns to
the calling process with register A set to OFFH and register H set
to one of the following physical or extended error codes:

01 : Permanent error
02 : Read/only disk
03 : Read/only file
04 : Select error
05 : File open by another process
07 : File password error
08 : File already exists
09 : ? in file name or type field

All Information Presented here is Proprietary to Digital Research

81

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 24

FUNCTION 24: RETURN LOGIN VECTOR

Entry Parameters:
Register C: 18H

Returned Value:
Registers HL: Login Vector

Function 24 returns the login vector in register pair HL. The
login vector is a 16-bit value with the least significant bit of L
corresponding to drive A, and the high-order bit of H corresponding
to the 16th drive, labeled P. A "0" bit indicates that the drive
is not on-line, while a "l" bit indicates the drive is active. A
drive is made active by either an explicit BDOS Select Disk call
(number 14), or an implicit selection when a BDOS file operation
specifies a non-zero "dr" byte in the FCB. Function 24 maintains
compatibilty with earlier releases, since registers A and L contain
the same values upon return.

FUNCTION 25: RETURN CURRENT DISK

Entry Parameters:
Register C: 19H

Returned Value:
Register A: Current Disk

Function 25 returns the currently selected default disk number
in register A. The disk numbers range from 0 through 15
corresponding to drives A through P.

All Information Presented here is Proprietary to Digital Research

82

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 26

FUNCTION 26: SET DMA ADDRESS

Entry Parameters:
Register C: IAH
Registers DE: DMA Address

"DMA" is an acronym for Direct Memory Address, which is often
used in connection with disk controllers that directly access the
memory of the computer to transfer data to and from the disk
subsystem. Under MP/M II, the current DMA is usually defined as the
buffer in memory where a record resides before a disk write and
after a disk read operation. If the BDOS Multi-Sector Count is
equal to one (see Function 44) , the size of the buffer is 128 bytes.
However, if the BDOS Multi-Sector Count is greater than one, the
size of the buffer must equal N * 128, where N equals the Multi
Sector Count.

Some BDOS functions also use the current DMA to pass parameters
and to return values. For example, BDOS functions that check and
assign file passwords, require that the password be placed in the
current DMA. As another example, Function 46 (Get Disk Free Space)
returns its results in the first 3 bytes of the current DMA. When
the current DMA is used in this context, the size of the buffer in
memory is determined by the specific requirements of the called
function.

When a transient program is initiated by the CLI, its DMA
address is set to BASE+0080H. The BDOS Reset Disk System function
(Function 13) also sets the DMA address to BASE+0080H. The Set DMA
function can change this default value to another memory address.
The DMA address is set to the value passed in the register pair DE.
The DMA address remains at this value until it is changed by another
Set DMA Address, or Reset Disk System call.

All Information Presented here is Proprietary to Digital Research

83

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 27

FUNCTION 27: GET ADDR(ALLOC)

Entry Parameters:
Register C: 1BH

Returned Value:
Registers HL: ALLOC Address

MP/M II maintains an "allocation vector" in main memory for
each active disk drive. Many programs commonly use the information
provided by the allocation vector to determine the amount of free
data space on a drive. Note, however, that the allocation
information may be inaccurate if the drive has been marked
read/only.

Function 27 returns in register pair HL, the base address of
the allocation vector for the currently selected drive. If a
physical error is encountered when the BDOS error mode is one of the
return modes (see Function 45) , Function 27 returns the value OFFFFH
in the register pair HL.

In banked switched MP/M II systems, the allocation vector may
be placed in bank zero. This is an XIOS option. In this case, a
transient program that has been loaded into another bank cannot
access the allocation vector. However, the BDOS function, Get Disk
Free Space (Function 46), can be used to directly return the number
of free 128 byte records on a drive. In fact, the MP/M II utilities
that display a drive's free space (STAT,SDIR, and SHOW) use Function
46 for that purpose.

FUNCTION 28: WRITE PROTECT DISK

Entry Parameters:
Register C: 1CH

Returned value:
Register A: Return code

The Write Protect Disk function provides temporary write
protection for the currently selected disk by marking the drive as
read/only. No process can write to a disk that is in the read/only
state. A successful drive reset operation must be performed for a
read/only drive to restore it to the read/write state (see Functions
13 and 37).

All Information Presented here is Proprietary to Digital Research

84

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 28

The Write Protect Disk function is conditional under MP/M II.
If another process has an open file on the drive, this function is
denied and the value OFFH is returned to the calling process.
otherwise, register A is set to zero. Note that a drive in the
read/only state cannot be reset by a process if another process has
an open file on the drive.

FUNCTION 29: GET READ/ONLY VECTOR

Entry Parameters:
Register C: 1DH

Returned Value:
Registers HL: R/O Vector Value

Function 29 returns a bit vector in register pair HL that
indicates which drives have the temporary read/only bit set. The
read/only bit is set either by a BDOS Write Protect Disk call, or by
the automatic software mechanisms within MP/M II that detect changed
disk media.

The format of the bit vector is analogous to that of the login
vector returned by Function 24. The least significant bit
corresponds to drive A, while the most significant bit corresponds
to drive P.

FUNCTION 30: SET FILE ATTRIBUTES

Entry Parameters:
Register C: 1EH
Registers DE: FCB Address

Returned Value:
Register A: Directory Code

The Set File Attributes function is the only BDOS function that
allows a program to manipulate file attributes. Other BDOS
functions can interrogate these file attributes but cannot change
them. The file attributes that can be set or reset by Function 30
are: fl' through f4’, R/O (tl'), System (t2’), and Archive (t3').
The register pair DE addresses an FCB containing a filename with the
appropriate attributes set or reset. The calling process must
ensure that it does not specify an ambiguous filename. In addition,

All Information Presented here is Proprietary to Digital Research

85

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 30

if the specified file is password protected, the correct password
must be placed in the first eight bytes of the current DMA buffer,
or have been previously established as the default password (see
Function 106).

Function 30 searches the FCB specified directory for an entry
belonging to the current user number that matches the FCB specified
name and type fields. The function then updates the directory to
contain the selected indicators. File attributes tl', t2', and t3'
are defined by MP/M II. They are described in Section 2.2.4.
Attributes fl' through f4’ are not presently used, but may be useful
for application programs, because they are not involved in the
matching process used by the BDOS during Open File and Close File
operations. Indicators f5’ through f8' are reserved for use as
interface attributes.

This function is not performed if the file specified by the
referenced FCB is currently open for another process. It is
performed, however, if the referenced file is open for the calling
process in locked mode. After successfully setting the attributes
of a file opened by the calling process, any subsequent file
reference requiring an open FCB returns a checksum error. This
function does not set the attributes of a file currently open in
read/only or unlocked mode for any process.

Upon return, Function 30 returns a Directory Code in register A
with the value 0 to 3 if the function was successful, or OFFH (255
Decimal) if the file specified by the referenced FCB was not found.
Register H is set to zero in both of these cases. If a physical or
extended error was encountered, the Set File Attributes function
performs different actions depending on the BDOS error mode (see
Function 45). If the BDOS error mode is the default mode, a message
identifying the error is displayed at the console and the process is
terminated. Otherwise, Function 30 returns to the calling process
with register A set to OFFH and register H set to one of the
following physical or extended error codes:

01 : Permanent error
02 : Read/only disk
04 : Select error
05 : File open by another process
07 : File password error
09 : ? in file name or type field

All Information Presented here is Proprietary to Digital Research

86

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 31

FUNCTION 31: GET ADDR(DISK PARMS

Entry Parameters:
Register C: lFH

Returned Value:
Registers HL: DPB Address

Function 31 returns in register pair HL, the address of the
XIOS-resident Disk Parameter Block (DPB) for the currently selected
drive. (Refer to the MP/M II System Guide for the format of the
DPB) . The calling process can use this address to extract the disk
parameter values for display or to compute the space on a drive.

If a physical error is encountered when the BDOS error mode is
one of the return modes (see Function 45), Function 31 returns the
value OFFFFH in the register pair HL.

FUNCTION 32: SET/GET USER CODE

Entry Parameters:
Register C: 20H
Register E: OFFH (get) or
User Code (set)

Returned Value:
Register A: Current Code or
 (no value)

A process can change or interrogate the currently active user
number by calling Function 32. If register E = OFFH, then the value
of the current user number is returned in register A where the value
is in the range of 0 to 15. If register E is not OFFH, then the
current user number is changed to the value of E (modulo 16).

All Information Presented here is Proprietary to Digital Research

87

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 33

FUNCTION 33: READ RANDOM

Entry Parameters:
Register C: 21H
Registers DE: FCB Address

Returned Value:
Register A: Error Code
Register H: Physical Error

The Read Random function is similar to the Read Sequential
function except that the read operation takes place at a particular
random record number, selected by the 24-bit value constructed from
the three byte (rO, rl, r2) field beginning at position 33 of the
FCB. Note that the sequence of 24 bits is stored with the least
significant byte first (rO) , the middle byte next (rl) , and the high
byte last (r2). The random record number can range from 0 to
242,143. This corresponds to a maximum value of 3 in byte r2.

To read a file with Function 33, the calling process must first
open the base extent (extent 0). This ensures that the FCB is
properly initialized for subsequent random access operations. (The
base extent may or may not contain any allocated data) . Function 33
places the specified record number in the random record field, and
then BDOS reads the record into the current DMA address. The
function automatically sets the logical extent and current record
values, but unlike the Read Sequential function, it does not advance
the record number. Thus a subsequent Read Random call re-reads the
same record. After a random read operation, a file can be accessed
sequentially, starting from the current randomly accessed position.
However, the last randomly accessed record is re-read or re-written
when switching from random to sequential mode.

All Information Presented here is Proprietary to Digital Research

88

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 33

If the BDOS Multi-Sector count is greater than one (see
Function 44), the Read Random function reads multiple consecutive
records into memory beginning at the current DMA. The rO,rl, and r2
field of the FCB is automatically incremented to read each record.
However, the FCBs random record number is restored to the first
record's value upon return to the calling process. Upon return, the
Read Random function sets register A to zero if the read operation
was successful. otherwise, register A contains one of the following
error codes:

01 : Reading unwritten data
03 : Cannot Close current extent
04 : Seek to unwritten extent
06 : Random record number out of range
10 : FCB checksum error
11 : Unlocked file verification error

 255 : Physical error : refer to register H

Error Code 01 is returned when the Read Random function
accesses a data block that has not been previously written.

Error Code 03 is returned when the Read Random function cannot
close the current extent prior to moving to a new extent.

Error Code 04 is returned when a read random operation accesses
an extent that has not been created.

Error Code 06 is returned when byte 35 (r2) of the referenced
FCB is greater than 3.

Error Code 10 is returned if the referenced FCB failed the FCB
checksum test.

Error Code 11 is returned if the BDOS cannot locate the FCB's
directory entry when attempting to verify that the referenced FCB
contains current information. This error is only returned for files
open in unlocked mode.

Error Code 255 is returned if a physical error was encountered
and the BDOS error mode is one of the return modes (see Function
45). If the error mode is the default mode, a message identifying
the physical error is displayed at the console and the calling
process is terminated. When a physical error is returned to the
calling process, it is identified by the four low-order bits of
register H as shown below:

01 : Permanent Error
04 : Select Error

The Read Random function also sets the four high-order bits of
register H on all error returns when the BDOS Multi-Sector Count is
greater than one. In this case, the four bits contain an integer
set to the number of records successfully read before the error was
encountered. This value can range from 0 to 15. The high-order

All Information Presented here is Proprietary to Digital Research

89

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 33

four bits of register H are always zeroed when the Multi-Sector
Count is equal to one.

FUNCTION 34: WRITE RANDOM

Entry Parameters:
Register C: 22H
Registers DE: FCB Address

Returned Value:
Register A: Error Code
Register H: Physical error

The Write Random function is analogous to the Read Random
Function, except that data is written to the disk from the current
DMA address. If the disk extent and/or data block where the data is
to be written is not already allocated, the BDOS automatically
performs the allocation before the write operation continues.

To write to a file using the Write Random function, the calling
process must first open the base extent (extent 0). This ensures
that the FCB is properly initialized for subsequent random access
operations. The base extent may or may not contain any allocated
data, but opening extent 0 records the file in the directory so that
it is can be displayed by the DIR utility. If a process does not
open extent 0 and allocates data to some other extent, the file will
be invisible to the DIR utility.

The Write Random function sets the logical extent and current
record positions to correspond with the random record being written,
but does not change the random record number. Thus sequential read
or write operations can follow a random write, with the current
record being re-read or re-written as the calling process switches
from random to sequential mode.

If the BDOS Multi-Sector count is greater than one (see
Function 44), the Write Random function reads multiple consecutive
records into memory beginning at the current DMA. The rO,rl, and r2
field of the FCB is automatically incremented to write each record.
However, the FCB's random record number is restored to the first
record's value upon return to the calling process. Upon return, the
Write Random function sets register A to zero if the write operation
was successful.

All Information Presented here is Proprietary to Digital Research

90

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 34

Otherwise, register A contains one of the following error codes:

02 : No available data block
03 : Cannot Close current extent
05 : No available directory space
06 : Random record number out of range
08 : Record locked by another process
10 : FCB checksum error
11 : Unlocked file verification error

 255 : Physical error : refer to register H

Error Code 02 is returned when the write command attempts to
allocate a new data block to the file and no unallocated data blocks
exist on the selected disk drive.

Error Code 03 is returned when the Read Random function cannot
close the current extent prior to moving to a new extent.

Error Code 05 is returned when the write function attempts to
create a new extent that requires a new directory entry and no
available directory entries exist on the selected disk drive.

Error Code 06 is returned when byte 35 (r2) of the referenced
FCB is greater than 3.

Error Code 08 is returned when the Write Random function
attempts to write to a record locked by another process. This error
is only returned for files open in unlocked mode.

Error Code 10 is returned if the referenced FCB failed the FCB
checksum test.

Error Code 11 is returned if the BDOS cannot locate the FCB's
directory entry when attempting to verify that the referenced FCB
contains current information. This error is only returned for files
open in unlocked mode.

Error Code 255 is returned if a physical error was encountered
and the BDOS error mode is one of the return modes (see Function
45). If the error mode is the default mode, a message identifying
the physical error is displayed at the console and the calling
process is terminated. When a physical error is returned to the
calling process, it is identified by the four low-order bits of
register H as shown below:

01 : Permanent error
02 : Read/only disk
03 : Read/only file

File open in read/only mode
File password protected in Write mode

04 : Select Error

The Write Random function also sets the four high-order bits of
register H on all error returns when the BDOS Multi-Sector Count is
greater than one. In this case, the four bits contain an integer

All Information Presented here is Proprietary to Digital Research

91

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 34

set to the number of records successfully read before the error was
encountered. This value can range from 0 to 15. The high-order
four bits of register H are always zeroed when the Multi-Sector
Count is equal to one.

FUNCTION 35: COMPUTE FILE SIZE

Entry Parameters:
Register C: 23H
Registers DE: FCB Address

Returned Value:
Register A: Error Flag
Register H: Physical or

 Extended error

Random Record Field Set

The Compute File Size function determines the "virtual" file
size, which is, in effect, the address of the record immediately
following the end of the file. The "virtual" size of a file
corresponds to the physical size if the file is written
sequentially. If the file is written in random mode, gaps might
exist in the allocation, and the file might contain fewer records
than the indicated size. For example, if a single record with
record number 262,143 (the MP/M II maximum) is written to a file
using the Write Random function, then the "virtual" size of the file
is 262,144 records even though only 1 data block is actually
allocated.

To compute file size, the calling process passes in register
pair DE, the address of a FCB in random mode format (bytes rO, rl
and r2 present) . Note that the FCB must contain an unambiguous
filename and type. Function 35 sets the random record field of the
FCB to the random record number + 1 of the last record in the file.
If the r2 byte is set to 04, then the file contains the maximum
record count 262,144.

A process can append data to the end of an existing file by
calling Function 35 to set the random record position to the end of
file, then performing a sequence of random writes starting at the
preset record address.

Note: the BDOS does not require that the file be open to use
Function 35.

Upon return, Function 35 returns a zero in register A if the
file specified by the referenced FCB was found, or a OFFH in
register A if the file was not found. Register H is set to zero in

All Information Presented here is Proprietary to Digital Research

92

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 35

both of these cases. If a physical or extended error was
encountered, Function 35 performs different actions depending on the
BDOS error mode (see Function 45). If the BDOS error mode is the
default mode, a message identifying the error is displayed at the
console and the process is terminated. Otherwise, Function 35
returns to the calling process with register A set to OFFH and
register H set to one of the following physical or extended errors:

01 : Permanent error
04 : Select error
09 : ? in file name or type field

FUNCTION 36: SET RANDOM RECORD

Entry Parameters:
Register C: 24H
Registers DE: FCB Address

Returned Value:
Random Record Field Set

The Set Random Record function returns the random record number
of the next record to be accessed from a file that has been read or
written sequentially to a particular point. This value is returned
in the random record field (bytes rO, rl, and r2) of the FCB
addressed by the register pair DE. Function 36 can be useful in two
ways.

First, it is often necessary to initially read and scan a
sequential file to extract the positions of various "key" fields.
As each key is encountered, Function 36 is called to compute the
random record position for the data corresponding to this key. If
the data unit size is 128 bytes, the resulting record number minus
one is placed into a table with the key for later retrieval. After
scanning the entire file and tabularizing the keys and their record
numbers, you can move directly to a particular record by performing
a random read using the corresponding random record number that was
saved earlier. The scheme is easily generalized when variable
record lengths are involved since the program need only store the
buffer-relative byte position along with the key and record number
to find the exact starting position of the keyed data at a later
time.

A second use of Function 36 occurs when switching from a
sequential read or write over to random read or write. A file is
sequentially accessed to a particular point in the file, Function 36
is called which sets the record number, and subsequent random read
and write operations continue from the next record in the file.

All Information Presented here is Proprietary to Digital Research

93

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 37

FUNCTION 37: RESET DRIVE

Entry Parameters:
Register C: 25H
Register DE: Drive Vector

Returned Value
Register A: Return Code

The Reset Drive function is used to programmatically restore
specified drives to the reset state (a reset drive is not logged-in
and is in read/write status) . The passed parameter in register pair
DE is a 16 bit vector of drives to be reset, where the least
significant bit corresponds to the first drive A, and the high-order
bit corresponds to the sixteenth drive, labeled P. Bit values of
"l" indicate that the specified drive is to be reset.

This function is conditional under MP/M II. If another process
has a file open on a drive to be reset, and the drive is removeable
or read/only, the Drive Reset function is denied and no drives are
reset.

Upon return, if the reset operation is successful, register A
is set to zero. Otherwise, register A is set to OFFH (255 decimal) .
If the BDOS error mode is not Return Error mode (see Function 45),
then an error message is displayed at the console, identifying a
process owning an open file.

FUNCTION 38: ACCESS DRIVE

Entry Parameters:
Register C: 26H
Register DE: Drive Vector

Returned Value:
Register A: Return Code
Register H: Extended Error

The Access Drive function inserts a special open file item into
the system lock list for each specified drive. While the item
exists in the lock list, the drive cannot be reset by another
process. As in Function 37, the calling process passes the drive
vector in register pair DE. The format of the drive vector is the
same as that used in Function 37.

All Information Presented here is Proprietary to Digital Research

94

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 38

The Access Drive function inserts no items if insufficient free
space exists in the lock list to support all the new items or if the
number of items to be inserted puts the calling process over the
lock list open file maximum. This maximum is a MP/M II Gensys
option. If the BDOS error mode is the default mode (see Function
45), a message identifying the error is displayed at the console and
the calling process is terminated. Otherwise, the Access Drive
function returns to the calling process, register A is set to OFFH
and register H is set to one of the following values.

10 : Process Open File limit exceeded
11 : No room in the system lock list

Register A is set to zero if the Access Drive function is
successful.

FUNCTION 39: FREE DRIVE

Entry Parameters:
Register C: 27H

Register DE: Drive Vector

The Free Drive function purges the open lock list of all file
and locked record items that belong to the calling process on the
specified drives. As in Function 38, the calling process passes the
drive vector in register pair DE.

Function 39 does not close files associated with purged open
file lock list items. In addition, if a process references a
"purged" file with a BDOS function requiring an open FCB, a checksum
error is returned. A file that has been written to should be closed
before making a Free Drive call to the file's drive. otherwise data
may be lost.

All Information Presented here is Proprietary to Digital Research

95

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 40

FUNCTION 40: WRITE RANDOM WITH
ZERO FILL

Entry Parameters:
Register C: 28H
Register DE: FCB address

Returned Value:
Register A: Error Code
Register H: Physical Error

The Write Random With Zero Fill function is similar to the
Write Random function (Function 34) with the exception that a
previously unallocated data block is filled with zeroes before the
record is written. If this function has been used to create a file,
records accessed by a read random operation that contain all zeroes
identify unwritten random record numbers. Unwritten random records
in allocated data blocks of files created using the Write Random
function contain uninitialized data.

FUNCTION 41: TEST AND WRITE RECORD

Entry Parameters:
Register C: 29H
DE: FCB Address

Returned Value:
Register A: Error Code
Register H: Physical Error

The Test and Write Record provides a means of verifying the
current contents of a record on disk before updating it. The
calling process must set bytes rO, rl, and r2 of the FCB addressed
by register pair DE to the random record number of the record to be
tested. The original version of the record (i.e. the record to be
tested) must reside at the current DMA address, followed immediately
by the new version of the record. The record size can range from
128 bytes to sixteen times that value depending on the BDOS Multi
Sector Count (see Function 44).

Function 41 verifies that the first record is identical to the
record on disk before replacing it with the new version of the
record. If the record on disk does not match, the record on disk is
not changed and an error code is returned to the calling process.

All Information Presented here is Proprietary to Digital Research

96

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 41

The Test and Write function is intended for use in situations
where more than one process has read/write access to a common file.
This situation is supported under MP/M II, when more than one
process opens the same file in unlocked mode. Function 41 is a
logical replacement for the record lock/unlock sequence of
operations because it prevents two processes from simultaneously
updating the same record. Note that this function is also supported
for files open in locked mode to provide compatibility between MP/M
II and CP/M.

Upon return, the Test and Write Random function sets register A
to zero if the function was successful. otherwise, register A
contains one of the following error codes:

01 : Reading unwritten data
03 : Cannot Close current extent
04 : Seek to unwritten extent
06 : Random record number out of range
07 : Records did not match
08 : Record locked by another process
10 : FCB checksum error
11 : Unlocked file verification error

 255 : Physical error : refer to register H

Error Code 01 is returned when the Test and Write function
accesses a data block that has not been previously written.

Error Code 03 is returned when the Test and Write function
cannot close the current extent prior to moving to a new extent.

Error Code 04 is returned when a read operation accesses an
extent that has not been created.

Error Code 06 is returned when byte 35 (r2) of the referenced
FCB is greater than 3.

Error Code 07 is returned when the Test and Write record test
fails.

Error Code 08 is returned if the specified record is locked by
another process. This error is only returned for files open in
unlocked mode.

Error Code 10 is returned if the referenced FCB failed the FCB
checksum test.

Error Code 11 is returned if the BDOS cannot locate the FCB's
directory entry when attempting to verify that the referenced FCB
contains current information. This error is only returned for files
open in unlocked mode.

Error Code 255 is returned if a physical error was encountered
and the BDOS error mode is one of the return modes (see Function
45). If the error mode is the default mode, a message identifying
the physical error is displayed at the console and the calling

All Information Presented here is Proprietary to Digital Research

97

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 41

process is terminated. When a physical error is returned to the
calling process, it is identified by the four low-order bits of
register H as shown below:

01 : Permanent error
02 : Read/only disk
03 : Read/only file or

File open in read/only mode
File password protected in Write mode

04 : Select Error

The Test and Write function also sets the four high-order bits
of register H on all error returns when the BDOS Multi-Sector Count
is greater than one. In this case, the four bits contain an integer
set to the number of records successfully tested or written before
the error was encountered. This value can range from 0 to 15. The
high-order four bits of register H are always zeroed when the Multi
Sector Count is equal to one.

FUNCTION 42: LOCK RECORD

Entry Parameters:
Register C: 2AH
DE: FCB Address

Returned Value:
Register A: Error Code
Register H: Physical Error

The Lock Record function locks one or more consecutive records
so that no other program with access to the records can
simultaneously lock or update them. This function is only supported
for files open in unlocked mode. If it is called for a file open in
locked or read/only mode, no locking action is performed and a
successful result is returned. This is done to provide
compatibility between MP/M II and CP/M.

The calling process passes in register pair DE, the address of
an FCB in which the Random Record Field is filled with the random
record number of the first record to be locked. The number of
records to be locked is determined by the BDOS Multi-Sector Count
(see Function 44) . The current DMA must contain the 2-byte File ID
returned by the Open File function when the referenced FCB was
opened. Note that the File ID is only returned by the Open function
when the open mode is unlocked.

The Lock Record function requires that each record number to be
locked reside in an allocated block for the file. In addition,
Function 42 verifies that none of the records to be locked are

All Information Presented here is Proprietary to Digital Research

98

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 42

currently locked by another process. Both of these tests are made
before any records are locked.

A MP/M II system generation parameter specifies the maximum
number of records that may be locked by a single process. Each
locked record consumes an entry in the BDOS system lock table which
is shared by locked record and open file entries. Another MP/M II
system generation parameter sets the size of this table. If there
is not sufficient space in the system lock table to lock all the
specified records, or the process record lock limit is exceeded,
then the Lock Record function locks no records and returns an error
code to the calling process.

Upon return, the Lock Record function sets register A to zero
if the lock operation was successful. Otherwise, register A
contains one of the following error codes:

01 : Reading unwritten data
03 : Cannot Close current extent
04 : Seek to unwritten extent
06 : Random record number out of range
08 : Record locked by another process
10 : FCB checksum error
11 : Unlocked file verification error
12 : Process record lock limit exceeded
13 : Invalid File ID
14 : No room in the system lock list

 255 : Physical error : refer to register H

Error Code 01 is returned when the Lock Record function
accesses a data block that has not been previously written.

Error Code 03 is returned when the Lock Record function cannot
close the current extent prior to moving to a new extent.

Error Code 04 is returned when the Lock Record function
accesses an extent that has not been created.

Error Code 06 is returned when byte 35 (r2) of the referenced
FCB is greater than 3.

Error Code 08 is returned if the specified record is locked by
another process.

Error Code 10 is returned if the referenced FCB failed the FCB
checksum test.

Error Code 11 is returned if the BDOS cannot locate the
referenced FCB's directory entry when attempting to verify that the
FCB contains current information.

Error Code 12 is returned when the sum of the number of records
currently locked by the calling process and the number of records to
be locked by the Lock Record call, exceeds the maximum allowed
value. This value is an MP/M II Gensys parameter.

All Information Presented here is Proprietary to Digital Research

99

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 42

Error Code 13 is returned when an invalid File ID is placed in
the current DMA.

Error Code 255 is returned if a physical error was encountered
and the BDOS error mode is one of the return modes (see Function
45). If the error mode is the default mode, a message identifying
the physical error is displayed at the console and the calling
process is terminated. When a physical error is returned to the
calling process, it is identified by the four low-order bits of
register H as shown below:

01 : Permanent error
04 : Select Error

The Lock Record function also sets the four high-order bits of
register H on all error returns when the BDOS Multi-Sector Count is
greater than one. In this case, the four bits contain an integer
set to the number of records successfully locked before the error
was encountered. This value can range from 0 to 15. The high-order
four bits of register H are always zeroed when the Multi-Sector
Count is equal to one.

FUNCTION 43: UNLOCK RECORD

Entry Parameters:
Register C: 2BH
DE: FCB Address

Returned Value:
Register A: Error Code
Register H: Physical Error

The Unlock Record function unlocks one or more consecutive
records previously locked by the Lock Record function. This
function is only supported for files open in unlocked mode. If it
is called for a file open in locked or read/only mode, no locking
action is performed and a successful result is returned. This is
done to provide compatibility between MP/M II and CP/M.

The calling process passes in register pair DE, the address of
an FCB in which the Random Record Field is filled with the random
record number of the first record to be unlocked. The number of
records to be unlocked is determined by the BDOS Multi-Sector Count
(see Function 44) . The current DMA must contain the 2-byte File ID
returned by the Open File function when the referenced FCB was
opened. Note that the File ID is only returned by the open function
when the open mode is unlocked.

All Information Presented here is Proprietary to Digital Research

100

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 43

The Unlock Record function will not unlock a record that is
currently locked by another process. However, no error is returned
if a process attempts to do that. Thus, if the Multi-Sector Count
is greater than one, the Unlock Record function unlocks all records
locked by the calling process, while skipping those records locked
by other processes.

Upon return, the Unlock Record function sets register A to zero
if the unlock operation was successful. otherwise, register A
contains one of the following error codes:

01 : Reading unwritten data
03 : Cannot Close current extent
04 : Seek to unwritten extent
06 : Random record number out of range
10 : FCB checksum error
11 : Unlocked file verification error
13 : Invalid File ID

 255 : Physical error : refer to register H

Error Code 01 is returned when the Unlock Record function
accesses a data block that has not been previously written.

Error Code 03 is returned when the Unlock Record function
cannot close the current extent prior to moving to a new extent.

Error Code 04 is returned when the Unlock Record function
accesses an extent that has not been created.

Error Code 06 is returned when byte 35 (r2) of the referenced
FCB is greater than 3.

Error Code 10 is returned if the referenced FCB failed the FCB
checksum test.

Error Code 11 is returned if the BDOS cannot locate the
referenced FCB's directory entry when attempting to verify that the
FCB contains current information.

Error Code 13 is returned when an invalid File ID is placed in
the current DMA.

Error Code 255 is returned if a physical error was encountered
and the BDOS error mode is one of the return modes (See function
45). If the error mode is the default mode, a message identifying
the physical error is displayed at the console and the calling
process is terminated. When a physical error is returned to the
calling process, it is identified by the four low-order bits of
register H as shown below:

01 : Permanent error
04 : Select Error

The Unlock Record function also sets the four high-order bits
of register H on all error returns when the BDOS Multi-Sector Count
is greater than one. In this case, the four bits contain an integer

All Information Presented here is Proprietary to Digital Research

101

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 43

set to the number of records successfully locked before the error
was encountered. This value can range from 0 to 15. The high-order
four bits of register H are always zeroed when the Multi-Sector
Count is equal to one.

FUNCTION 44: SET MULTI-SECTOR CNT

Entry Parameters:
Register C: 2CH

E: Number of Sectors

Returned Value:
Register A: Return Code

The Set Multi-Sector Count function provides logical record
blocking under MP/M II. It enables a process to read and write from
1 to 16 "physical" records of 128 bytes at a time during subsequent
BDOS Read and Write functions. It also specifies the number of 128
byte records to be locked or unlocked by the BDOS Lock and Unlock
functions.

Function 44 sets the Multi-Sector Count value for the calling
process to the value passed in register E. Once set, the specified
Multi-Sector Count remains in effect until the calling process makes
another Set Multi-Sector Count function call and changes the value.
Note that the Command Line Interpreter (CLI) sets the Multi-Sector
Count to one when it initiates a transient program.

The Multi-Sector count affects BDOS error reporting for the
BDOS read, write, lock and unlock functions. If an error interrupts
these functions when the Multi-Sector is greater than one, they
return the number of records successfully processed in the high
order four bits of register H.

Upon return, register A is set to zero if the specified value
is in the range of 1 to 16. Otherwise, register A is set to OFFH

All Information Presented here is Proprietary to Digital Research

102

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 45

FUNCTION 45: SET BDOS ERROR MODE

Entry Parameters:
Register C: 2DH

E: BDOS error mode

Returned Value:
None

The SET BDOS Error Mode function determines how physical and
extended errors (see Section 2.2.13) are handled for a process. The
Error Mode can exist in three modes: the default mode, Return Error
mode and Return and Display Error mode. In the default mode, BDOS
displays a system message at the console identifying the error and
terminates the calling process. In the return modes, BDOS sets
register A to OFFH (255 Decimal), places an error code identifying
the physical or extended error in the four low-order bits of
register H, and returns to the calling process. In Return and
Display mode, BDOS displays the system message before returning to
the calling process. No system messages are displayed, however,
when BDOS is in Return Error mode.

Function 45 sets the BDOS error mode for the calling process to
the mode specified in register E. If register E is set to OFFH (255
Decimal), the error mode is set to Return Error mode. If register E
is set to OFEH (254 Decimal), the error mode is set to Return and
Display mode. If register E is set to any other value, the error
mode is set to the default mode.

All Information Presented here is Proprietary to Digital Research

103

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 46

FUNCTION 46: GET DISK FREE SPACE

Entry Parameters:
Register C: 2EH

E: Drive

Returned Value: First 3 bytes
of current DMA
buffer

Register A: Error Flag
Register H: Physical error

The Get Disk Free Space function determines the number of free
sectors (128 byte records) on the specified drive. The calling
process passes the drive number in register E, with 0 for drive A, 1
for B, etc. , through 15 for drive P in a full 16 drive system.
Function 46 returns a binary number in the first 3 bytes of the
current DMA buffer. This number is returned in the following
format:

fsO fsl fs2

Disk Free Space Field Format

fso = low byte
fsl = middle byte
fs2 = high byte

Upon return, register A is set to zero if the BDOS Error Mode is the
default mode. However, if the BDOS Error Mode is one of the return
modes (see Function 45) and a physical error was encountered,
register A is set to OFFH (255 Decimal), and register H is set to
one of the following values:

01 - Permanent error
04 - Select error

All Information Presented here is Proprietary to Digital Research

104

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 47

FUNCTION 47: CHAIN TO PROGRAM

Entry Parameters:
Register C: 2FH

The Chain To Program function provides a means of chaining from
one program to the next without operator intervention. Although
there is no passed parameter for this call, the calling process must
place a command line terminated by a null byte in the default DMA
buffer.

Function 47 does not return any values to the calling process
because any errors encountered are handled by the Command Line
Interpreter (CLI).

Note: Function 47 makes an XDOS Conditional Attach Console
call for the calling process. If the calling process is detached
from its console, the program chain is not performed and Function 47
returns to the calling process.

FUNCTION 48: FLUSH BUFFERS

Entry Parameters:
Register C: 30H

Returned Value:
Register A: Error Flag
Register H: Permanent Error

The Flush Buffers function forces the write of any write
pending records contained in internal blocking/deblocking buffers.
This function only affects those systems that have implemented a
write-deferring blocking/deblocking algorithm in their XIOS (see
Section 2.2.12).

Upon return, register A is set to zero if the flush operation
was successful. If a physical error was encountered, the Flush
Buffers function performs different actions depending on the BDOS
error mode (see Function 45). If the BDOS error mode is in the
default mode, a message identifying the error is displayed at the
console and the calling process is terminated. otherwise, the Flush
Buffers function returns to the calling process with register A set
to OFFH and register H set to the following physical error code:

01 : Permanent error

All Information Presented here is Proprietary to Digital Research

105

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 100

FUNCTION 100: SET DIRECTORY LABEL

Entry Parameters:
Register C: 64H
Register DE: FCB Address

Returned Value:
Register A : Directory Code
Register H : Physical or

 Extended Error

The Set Directory Label function creates a directory label or
updates the existing directory label for the specified drive. The
calling process passes in register pair DE, the address of an FCB
containing the name, type, and extent fields to be assigned to the
directory label. The name and type fields of the referenced FCB are
not used to locate the directory label in the directory; they are
simply copied into the updated or created directory label. The
extent field of the FCB (byte 12) contains the user's specification
of the directory label data byte. The definition of the directory

abel data byte is:

bit 7 - Require passwords for password-protected files
6 - Perform access date and time stamping
5 - Perform update date and time stamping
4 - Make function creates XFCBs
0 - Assign a new password to the directory label

If the current directory label is password protected, the correct
password must be placed in the first 8 bytes of the current DMA or
have been previously established as the default password (see
function 106). If bit 0 (the low-order bit) of byte 12 of the FCB
is set to 1, it indicates that a password for the directory label
has been placed in the second eight bytes of the current DMA.

Function 100 returns a Directory Code in register A with a
value from 0 to 3 if the directory label create or update was
successful, or OFFH (255 Decimal) if no space existed in the
referenced directory to create a directory label. Register H is set
to zero in both of these cases. If a physical error or extended was
encountered, function 100 performs different actions depending on
the BDOS error mode (see function 45). If the BDOS error mode is
the default mode, a message identifying the error is displayed at
the console and the calling process is terminated. otherwise,
function 100 returns to the calling process with register A set to
OFFH and register H set to one of the following physical or extended
error codes:

01 : Permanent error
02 : Read/only disk
04 : Select Error
07 : File password error

All Information Presented here is Proprietary to Digital Research

106

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 101

FUNCTION 101: RETURN DIRECTORY
LABEL DATA

Entry Parameters:
Register C: 65H
Register E: Drive

Returned Value:
Registers A : Directory label

 Data Byte
Register H : Physical Error

The Return Directory Label Data function returns the data byte
of the directory label for the specified drive. The calling process
passes the drive number in register E with 0 for drive A, 1 for
drive B, and so on through 15 for drive P in a full sixteen drive
system. The format of the directory label data byte is shown below:

bit 7 - Require passwords for password protected files
6 - Perform access date and time stamping
5 - Perform update data and time stamping
4 - Make function creates XFCBs
0 - Directory label exists on drive

Function 101 returns the directory label data byte to the calling
process in register A. Register A equal to zero indicates that no
directory label exists on the specified drive. If a physical error
is encountered by function 101 when the BDOS Error mode is in one of
the return modes (see function 45) , this function returns with
register A set to OFFH (255 Decimal) and register H set to one of
the following:

01 : Permanent error
04 : Select error

All Information Presented here is Proprietary to Digital Research

107

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 102

FUNCTION 102: READ FILE XFCB

Entry Parameters:
Register C: 66H
Register DE: FCB Address

Returned Value:
Register A : Directory Code
Register H : Physical Error

The Read File XFCB function reads the directory XFCB
information for the specified file into bytes 20 through 32 of the
specified FCB. The calling process passes in register pair DE, the
address of an FCB in which the drive, filename, and type fields have
been defined.

If function 102 is successful, it sets the following fields in
the referenced FCB:

byte 12 : XFCB password mode field
bit 7 - Read mode
bit 6 - Write mode
bit 5 - Delete mode

Byte 12 equal to zero indicates the file
has not been assigned a password.

byte 13 - 23 : XFCB password field (encrypted)

byte 24 - 27 : XFCB Create or Access time stamp field

byte 28 - 31 : XFCB Update time stamp field

Upon return, function 102 returns a Directory Code in register
A with the value 0 to 3 if the XFCB read operation was successful,
or OFFH (255 Decimal) if the XFCB was not found. Register H is set
to zero in both of these cases. If a physical error or extended was
encountered, function 102 performs different actions depending on
the BDOS error mode (see function 45) . If the BDOS error mode is in
the default mode, a message identifying the error is displayed at
the console and the calling process is terminated. Otherwise,
function 102 returns to the calling process with register A set to
OFFH and register H set to one of the following physical error
codes:

01 : Permanent error
04 : Select Error

All Information Presented here is Proprietary to Digital Research

108

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 103

FUNCTION 103: WRITE FILE XFCB

Entry Parameters:
Register C: 67H
Register DE: FCB Address

Returned Value:
Register A : Directory Code
Register H : Physical or

 Extended Error

The Write File XFCB function creates a new XFCB or updates the
existing XFCB for the specified file. The calling process passes in
register pair DE, the address of an FCB in which the drive, name,
type, and extent fields have been defined. The "ex" field, if set,
specifies the password mode and whether a new password is to be
assigned to the file. The for-mat of the extent byte is shown below:

FCB byte 12 (ex) : XFCB password mode
bit 7 - Read mode
bit 6 - Write mode
bit 5 - Delete mode
bit 0 - assign new password to the file

If bit 0 is set to 1, the new password must reside in the second 8
bytes of the current DMA. If the FCB is currently password
protected, the correct password must reside in the first 8 bytes of
the current DMA, or have been previously established as the default
password (see function 106).

Upon return, function 100 returns a Directory Code in register
A with the value 0 to 3 if the XFCB create or update was successful,
or OFFH (255 Decimal) if no directory label existed on the specified
drive, or the file named in the FCB was not found, or no space
existed in the directory to create an XFCB. Register H is set to
zero in all of these cases. If a physical error or extended was
encountered, function 103 performs different actions depending on
the BDOS error mode (see function 45). If the BDOS error mode is
the default mode, a message identifying the error is displayed at
the console and the calling process is terminated. otherwise,
function 103 returns to the calling process with register A set to
OFFH and register H set to one of the following physical or extended
error codes:

01 : Permanent error
02 : Read/only disk
04 : Select Error
07 : File password error

All Information Presented here is Proprietary to Digital Research

109

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 104

FUNCTION 104: SET DATE AND TIME

Entry Parameters:
Register C: 68H
Register DE: TOD Address

Returned Value: none

The Set Date and Time function sets the system internal date
and time. The calling process passes the address of a 4-byte
structure containing the date and time specification in the register
pair DE. The format of the date and time data structure is:

byte 0 - 1 : Date field
byte 2 : Hour field
byte 3 : Minute field

The date is represented as a 16-bit integer with day 1 corresponding
to January 1, 1978. The time is represented as two bytes: hours and
minutes stored as two BCD digits.

Under MP/M II, this function also sets the second field of the
system date and time to zero.

FUNCTION 105: GET DATE AND TIME

Entry Parameters:
Register C: 6911
Register DE: TOD Address

Return Value TOD

The Get Date and Time function obtains the system internal date
and time. The calling process passes in register pair DE, the
address of a four-byte data structure which receives the date and
time values. The format of the data structure is the same as the
format described in function 104. This function is equivalent to
MP/M II function 155 except that it does not return the seconds
field of the internal time.

All Information Presented here is Proprietary to Digital Research

110

MP/M II Programmer's Guide 2.4 BDOS Calls: Function 106

FUNCTION 106: SET DEFAULT PASSWORD

Entry Parameters:
Register C: 6AH
Register DE: Password Address

Returned Value: none

The Set Default Password function allows a process to specify a
password value before a file protected by the password is accessed.
When the file system accesses a password protected file, it checks
the current DMA and the default password for the correct value. A
password error is not returned if either password is correct. The
default password is maintained by the BDOS in an internal table
indexed by the calling process's console number. once assigned, it
is maintained until another Set Default Password call is made by a
process having the same console number.

To make a function 106 call, the calling process sets register
pair DE to the address of an eight byte field containing the
password.

FUNCTION 107: RETURN SERIAL NUMBER

Entry Parameters:
Register C: 6BH
Register DE: Serial number

 field

Function 107 returns the MP/M II serial number to the six-byte
field addressed by register pair DE.

All Information Presented here is Proprietary to Digital Research

111

Section 3
XDOS Interface

3.1 Introduction

This section contains information on data structures used in
the XDOS module. The XDOS uses these data structures to:

 • manage the memory resource
 • communicate messages between processes
 • synchronize process execution

Also included are descriptions of the XDOS functions, including the
entry parameters and returned values, and a discussion of error
handling by the XDOS. The reader should be thoroughly familiar with
the material covered in Section 1 before proceeding.

3.2 Process Descriptor Data Structure

Each process running under MP/M II is associated with a Process
Descriptor that defines all the characteristics of the process. The
XDOS uses the Process Descriptor to save and restore the state of a
process. The Process Descriptor data structure is shown below in
both PL/M and assembly language.

PL/M:

 DECLARE CNS$HNDLR STRUCTURE (
PL ADDRESS,
STATUS BYTE,
PRIORITY BYTE,
STKPTR ADDRESS,
NAME (8) BYTE,
CONSOLE$LIST BYTE,
MEMSEG BYTE,
DPARAM ADDRESS,
THREAD ADDRESS,
DISKSETDMA ADDRESS,
DISK$SLCT BYTE,
DCNT ADDRESS,
SEARCHL BYTE,
SEARCHA ADDRESS,
PD EXTENT,
REGISTERS (10) ADDRESS,
EXTENSION ADDRESS,
INITIAL (0,0,200,.CNS$STK(19),

 'CNS ‘,1,OFFH);

All Information Presented here is Proprietary to Digital Research

112

MP/M II Programmer's Guide 3.2 Process Descriptor

DECLARE CNS$STK (20) ADDRESS INITIAL (
 OC7C7H,OC7C7H,OC7C7H,OC7C7H,OC7C7H,OC7C7H,
 OC7C7H,OC7C7H,OC7C7H,OC7C7H,OC7C7H,OC7C7H,
 OC7C7H,OC7C7H,OC7C7H,OC7C7H,OC7C7H,OC7C7H,
 OC7C7H,STRT$CNS);

Assembly Language:

CNSHND:
DW 0 ;PL
DB 0 ;STATUS
DB 200 ;PRIORITY
DW CNSTK+38 ;STKPTR
DB 'CNS ‘ ; NAME
DB 0 ;CONSOLE/LIST
DB OFFH ;MEMSEG (FF = resident)
DS 2 ;DPARAM
DS 2 ;THREAD
DS 2 ;DISK SET DMA
DS I ;DISK SLCT
DS 2 ;DCNT
DS 1 ;SEARCHL
DS 2 ;SEARCHA
DS 2 ;PD EXTENT

;REGISTERS:
DS 2 ;HL'
DS 2 ;DE'
DS 2 ;BC'
DS 2 ;AF'
DS 2 ;IY
DS 2 ;IX
DS 2 ;HL
DS 2 ;DE
DS 2 ;BC
DS 2 ;AF
DS 2 ;EXTENSION

CNSTK:
DW OC7C7H,OC7C7H,OC7C7H,OC7C7H
DW OC7C7H,OC7C7H,OC7C7H,OC7C7H
DW OC7C7H,OC7C7H,OC7C7H,OC7C7H
DW OC7C7H,OC7C7H,OC7C7H
DW CNSPR ; CNSTK+38 = PROCEDURE ADR

All Information Presented here is Proprietary to Digital Research

113

MP/M II Programmer's Guide 3.2 Process Descriptor

The elements of the Process Descriptor data structure shown
above are defined in Table 3-1.

 Table 3-1. Process Descriptor Elements

Element Definition

PL 2-byte link field, initially set by user
when creating a process to the address of
next Process Descriptor, or zero if no
more exist.

STATUS 1 byte, process status, set by system.
The Dispatcher reads the status byte to
determine the operation to be performed on
the process. The values of the status
byte are shown below:
00 - process is ready to run
01 - process is dequeueing
02 - process is enqueueing
03- process is polling
04 - process is waiting for a flag
05 - process is on delay list
06 - not implemented under MP/M II
07 - terminate process
08 - set process priority
09 - Dispatch
10 - Attach console
11 - Detach console
12 - Set console
13 - Attach list
14 - Detach list

PRIORITY 1 byte, process priority, set by user.

STKPTR 2 bytes, stack pointer, initially set by
user.

NAME 8 bytes, ASCII process name, set by user.
The high-order bit of each byte of the
process name is reserved for use by the
system. The function of each of the high
order bits , shown as NAME (n)is
described below:

NAME(O)' The high-order bit of NAME(O) on
indicates that the process is performing
direct console BIOS calls and that MP/M II
should ignore all control characters. It
also suppresses the normal console status
check done when BDOS disk functions are
called. The user may set this bit.

All Information Presented here is Proprietary to Digital Research

114

MP/M II Programmer's Guide 3.2 Process Descriptor

 Table 3-1. (continued)

Element Definition

NAME(l)' The high-order bit of NAME(l) "on"
indicates that the process is currently
executing code in the serially re-usable
BDOS. MP/M II does not allow a process to
Terminate while it is in the BDOS. Any
Attempt to abort the process will set
NAME(6)' "on". This bit is set by the
system; it must not be set by the user.

NAME(2)’ The high-order bit of NAME(2) "on"
indicates that no stack swap is done for
this process upon entering the BDOS. This
bit takes precedence over the system
boolean indicating whether user system
stacks have been allocated. It is
required when more than one process shares
the same memory segment and makes BDOS
function calls. The user may set this
bit.

NAME(3)' The high-order bit of NAME(3) "on"
Indicates that live keyboard simulation is
to be suppressed. Live keyboard
simulation is done by performing console
status calls at each BDOS disk I/O
function call. This bit is set by the
user.

NAME(4)' The high-order bit of NAME(4) "on"
indicates that extended errors resulting
from BDOS calls are to be returned to the
calling program; normally an error
message is displayed on the console and
the calling program is terminated. This
bit is set by the user.

NAME(5)' The high-order bit of NAME(5) "on"
indicates that extended errors resulting
from BDOS calls are to be returned to the
calling program and an error message is to
be displayed on the console. This bit is
set by the user.

NAME(6)’ The high-order bit of NAME(6) "on"
indicates that an attempt has been made to
abort the process while either NAME (1) ' or
NAME(7)' has been on. This bit is set by
the system.

All Information Presented here is Proprietary to Digital Research

115

MP/M II Programmer's Guide 3.2 Process Descriptor

 Table 3-1. (continued)

Element Definition

NAME(7)’ The high-order bit of NAME(7) "on"
indicates that the process is not to be
aborted by any means. An attempt to abort
this process results in setting NAME(6)1
"on". This bit is set by the user.

CONSOLE/LIST 1 byte, low-order four bits contain the
console device number to be used by
process, and the high-order four bits
contain the list device number, set by
user.

MEMSEG 1 byte, memory segment table index.

DPARAM 2 bytes, reserved for MP/M II.

THREAD 2 bytes, process list thread, set by
system.

DISKSETDMA 2 bytes, default DMA address, set by
system on BDOS set DMA calls, can be set
by user.

DISK$SLCT 1 byte, default disk/user code, set by
system on BDOS set user and disk select
calls, can be set by user.

DCNT 2 bytes, reserved for MP/M II.

SEARCHL 1 byte, reserved for MP/M II.

SEARCHA 2 bytes, reserved for MP/M II.

PD EXTENT 2 bytes, reserved for MP/M II.

REGISTERS 20 bytes, 8080 / Z80 register save area,
can be set by user prior to process
creation in order to pass parameters to a
created process. The following entries
show the register storage allocation.
Bytes are stored in the normal 8080/Z80
manner with the low-order register byte
preceding the high-order byte.

All Information Presented here is Proprietary to Digital Research

116

MP/M II Programmer's Guide 3.2 Process Descriptor

 Table 3-1. (continued)

Element Definition

Bytes 0- 1 HL', Alternate Z80
Bytes 2- 3 DE', Alternate Z80
Bytes 4- 5 BC', Alternate Z80
Bytes 6- 7 AF1, Alternate Z80
Bytes 8- 9 IY
Bytes 10-11 IX
Bytes 12-13 HL
Bytes 14-15 DE
Bytes 16-17 BC
Bytes 18-19 AF

EXTENSION 2 bytes, reserved for MP/M II

The following conventions should be used in naming processes
that are to run under MP/M II: processes that wait on queues that
receive command tails from the TMPs should have the same name as the
queue that they read. If a process is to be protected from being
aborted by a user with the ABORT command, its name must have at
least one lower-case character.

3.3 Queue Data Structures

A queue is a first-in first-out (FIFO) mechanism that is
implemented in MP/M II to provide several essential functions in the
multi-programming environment. Queues can be used for the
communication of messages between processes, to synchronize
processes, and to provide mutual exclusion.

MP/M II is designed to simplify queue management for both user
and system processes. Queues are treated like disk files, and can
be created, opened, written to, read from, and deleted.

The queue data structures used by MP/M II include the Queue
Control Block (QCB) and the User Queue Control Block (UQCB). There
are two types of Queue Control Blocks: circular or linked. The
type of QCB used depends upon the size of the message the queue
contains. Message sizes of 0 to 2 bytes use circular queues while
message sizes of 3 or more bytes use linked queues.

3.3.1 Circular Queues

The following example illustrates how to initialize a QCB for a
circular queue containing 80 messages, each of which has a one byte
length. The example is shown in both PL/M and assembly language.

All Information Presented here is Proprietary to Digital Research

117

MP/M II Programmer's Guide 3.3 Queue Data Structures

PL/M:

 DECLARE CIRCULAR$QUEUE STRUCTURE (
QL ADDRESS,
NAME(8) BYTE,
MSGLEN ADDRESS,
NMBMSGS ADDRESS,
DQPH ADDRESS,
NQPH ADDRESS,
MSG$IN ADDRESS,
MSG$OUT ADDRESS,
MSG$CNT ADDRESS,
BUFFER (80) BYTE)
INITIAL (O,’CIRCQUE ',1,80);

Assembly Language:

CRCQUE:
DS 2 ;QL
DB 'CIRCQUE ‘ ; NAME
DW 1 ;MSGLEN
DW 80 ;NMBMSGS
DS 2 ;DQPH
DS 2 ;NQPH
DS 2 ;MSGIN
DS 2 ;MSGOUT
DS 2 ;MSGCNT

BUFFER:
DS 80 ;BUFFER

The elements of the circular queue shown above are defined in
Table 3-2. The total queue overhead is 24 bytes.

 Table 3-2. Circular Queue Elements

Element Definition

QL 2-byte link, set by system.

NAME 8 ASCII character queue name, set by user.

MSGLEN 2 bytes, length of message, set by user.

NMBMSGS 2 bytes, number of messages, set by user.

DQPH 2 bytes, Dequeue list process head, set by
system.

NQPH 2 bytes, Enqueue list process head, set by
system.

MSG$IN 2 bytes, pointer to next message in, set
by system.

All Information Presented here is Proprietary to Digital Research

118

MP/M II Programmer's Guide 3.3 Queue Data Structures

Table 3-2. (continued)

Element Definition

MSG$OUT 2 bytes, pointer to next message out, set
by system.

MSG$CNT 2 bytes, number of messages in the queue,
set by system.

BUFFER n bytes, where n is equal to the message
length times the number of messages. Space
allocated by user, set by system. NOTE:
Mutual exclusion queues require a 2-byte
buffer for the owner Process Descriptor
address.

3.3.2 Linked Queues

The following example illustrates how to initialize a QCB for a
linked queue containing 4 messages, each 33 bytes in length.

PL/M:

DECLARE LINKED$QUEUE STRUCTURE (
QL ADDRESS,
NAME (8) BYTE,
MSGLEN ADDRESS,
NMBMSGS ADDRESS,
DQPH ADDRESS,
NQPH ADDRESS,
MH ADDRESS,
MT ADDRESS,
BH ADDRESS,
BUFFER (140) BYTE)
INITIAL (O,’LNKQUE ‘,33,4);

All Information Presented here is Proprietary to Digital Research

119

MP/M II Programmer's Guide 3.3 Queue Data Structures

Assembly Language:

LNKQUE:
DS 2 QL
DB 'LINKQUE ; NAME
DW 33 MSGLEN
DW 4 NMBMSGS
DS 2 DQPH
DS 2 NQPH
DS 2 MH
DS 2 MT
DS 2 BH

BUFFER:
DS 2 MSG #1 LINK
DS 33 MSG #1 DATA
DS 2 MSG #2 LINK
DS 33 MSG #2 DATA
DS 2 MSG #3 LINK
DS 33 MSG #3 DATA
DS 2 MSG #4 LINK
DS 33 MSG #4 DATA

The elements of the linked queue shown above are defined in Table 3
3. The total queue overhead is 24 bytes.

 Table 3-3. Linked Queue Elements

Element Definition

QL 2-byte link, set by system.

NAME 8 ASCII character queue name, set by user.

MSGLEN 2 bytes, length of message, set by user.

NMBMSGS 2 bytes, number of messages, set by user.

DQPH 2 bytes, Dequeue list process head, set by
system.

NQPH 2 bytes, Enqueue list process head, set by
system.

MH 2 bytes, message head, set by system.

MT 2 bytes, message tail, set by system.

BH 2 bytes, buffer head, set by system.

BUFFER n bytes where n is equal to the message
Length plus two, times the number of
messages. Space allocated by the user,
set by the system.

All Information Presented here is Proprietary to Digital Research

120

MP/M II Programmer's Guide 3.3 Queue Data Structures

3.3.3 User Queue Control Block

The User Queue Control Block (UQCB) data structure provides
read/write access to queues in the same manner that an FCB provides
access to a disk file. Like files, queues are "opened" by an
operation that fills in the actual QCB address, which then can be
read from or written to.

If the actual queue address is known, it can be used in the
pointer field of the UQCB, in which case the 8-byte name field can
be omitted, and an open operation is not required to access the
queue. If the address is not known, then an open operation must be
performed (see Function 135).

The following example illustrates how to initialize a UQCB in
both PL/M and assembly language.

PL/M:

DECLARE USER$QUEUE$CONTROL$BLOCK STRUCTURE (
POINTER ADDRESS,
MSGADR ADDRESS,
NAME (8) BYTE)
INITIAL (0,.BUFFER,’SPOOL ‘);

DECLARE BUFFER (33) BYTE;

Assembly Language:

UQCB:
DS 2 ;POINTER
DW BUFFER; SGADR
DB 'SPOOL ‘ ;NAME
BUFFER:
DS 33 ;BUFFER

All Information Presented here is Proprietary to Digital Research

121

MP/M II Programmer's Guide 3.3 Queue Data Structures

The elements of the UQCB shown above are defined in Table 3-4.

 Table 3-4. UQCB Elements

Element Definition

POINTER 2 bytes, set by system to address of
actual queue during an open queue
operation, or set by the user if the
actual queue address is known.

MSGADR 2 bytes, address of user buffer, set by
user.

NAME 8 bytes, ASCII queue name, set by user,
may be omitted if the pointer field is set
by the user.

3.3.4 Queue Naming Conventions

The following conventions should be used in naming queues under
MP/M II: if the Terminal Message Processor (TMP) is to write
directly to the queue, then the queue must have an upper-case ASCII
name. Thus, when a user at a system console enters the queue name
followed by a command tail, the CLI writes the command tail directly
to the queue (see Section 1.5).

To make a queue inaccessible by a user at a system console, the
queue name must contain at least one lower-case ASCII character.
Mutual exclusion queues should be named upper-case 'MX' followed by
1 to 6 additional ASCII characters. These queues must have a two
byte buffer in which the XDOS places the address of the Process
Descriptor of the process owning the mutual exclusion message.

3.4 Memory Descriptor Data Structure

Each process running under MP/M II is associated with a Process
Descriptor that contains a memory segment index. This index
identifies a specific Memory Descriptor within MP/M II's Memory
Segment Table. In MP/M II the memory segment index can have the
values 0 to 7, corresponding the 8-entry Memory Segment
Table, or FFH, indicating that the process is in common memory and
does not use the Memory Segment Table. The XDOS uses the Memory
Descriptor data structure to allocate and manage the memory
resource. The Memory Descriptor contains four bytes: the memory
segment base page address, the memory segment page size, the memory
segment attributes, and bank. The Memory Descriptor data structure
is shown below in both PL/M and assembly language.

All Information Presented here is Proprietary to Digital Research

122

MP/M II Programmer's Guide 3.4 Memory Descriptor

PL/M:

Declare memory$descriptor structure (
base byte,
size byte,
attrib byte,
bank byte);

Assembly Language:
MEMDES:

DS 1 ;base
DS 1 ;size
DS 1 ;attributes
DS 1 ;bank

The elements of the Memory Descriptor shown above are defined
in Table 3-5.

 Table 3-5. Memory Descriptor Elements

Element Definition

BASE 1 byte, base page address of the memory
segment, set by user.

SIZE 1 byte, size in pages of the memory
segment, set by user.

ATTRIBUTE 1 byte, high-order bit "on" indicates that
the memory segment is allocated, other
bits are reserved for MP/M II, normally
set by system, but a user may pr I e-allocate
a memory segment by setting the high-order
bit "on".

BANK 1 byte, bank number in the range 0 to 7,
where bank 0 is the bank which is switched
in when MP/M II is loaded and initialized,
set by user.

3.5 System Data Page

The System Data Page is the top 256 bytes of the MP/M II
Operating System. It contains static information about the system
configuration which the user enters when executing GENSYS to perform
system generation. It also contains dynamic information which is
used by MP/M II at run time.

All Information Presented here is Proprietary to Digital Research

123

MP/M II Programmer's Guide 3.5 System Data Page

Table 3-6 describes the individual byte assignments within the
System Data Page.

Table .3-6. System Data Page Byte Assignments

Byte Contents

000-000 Mem$top, top page of memory
001-001 Nmb$cns, number of system consoles (TMPs)
002-002 Brkpt$RST, breakpoint RST #
003-003 Add system call user stacks, boolean
004-004 Bank switched, boolean
005-005 Z80 version, boolean
006-006 banked bdos, boolean
007-007 XIOS jump table page
008-008 RESBDOS base page
009-010 CP/NET master configuration table address
011-011 XDOS base page
012-012 RSP's (BNKXIOS top+l) base page
013-013 BNKXIOS base page
014-014 BNKBDOS base page
015-015 Maxmemseg, max memory segment number
016-047 Initial memory segment table
048-063 Breakpoint vector table, filled in by debuggers
064-079 Reserved for MP/M II
080-095 System call user stack pointer table
096-119 Reserved for MP/M II
120-121 Nmb records in MPM.SYS file
122-122 # ticks/sec
123-123 System Drive
124-124 Common Memory Base Page
125-125 Number of Rsp's
126-127 Listcp array Address
128-143 Subflg, submit flag array
144-186 Reserved for MP/M II
187-187 Max locked records/process
188-188 Max open files/process
189-190 # list items
191-192 Pointer to base of lock table free space
193-193 Total system locked records
194-194 Total system open files
195-195 Dayfile logging, boolean
196-196 Temporary file drive
197-197 Number of printers
197-241 Reserved for MP/M II
242-242 Banked XDOS base page
243-243 TMP process descriptor base
244-244 Console.dat base
245-246 BDOS/XDOS entry point
247-247 TMP.spr base
248-248 Nmbrsps, number of banked RSPs
249-249 Brsp base address
250-251 Brspl, non-resident rsp process link
252-253 Sysdatadr, XDOS internal data segment address
254-255 Rspl, resident system process link

All Information Presented here is Proprietary to Digital Research

124

MP/M II Programmer's Guide 3.6 XDOS Internal Data Segment

3.6 XDOS Internal Data Segment

This section contains information regarding the location of
critical variables contained in the XDOS Internal Data Segment. The
information may be useful in some application programs. However, it
must be accessed with caution. The information may also be useful
in debugging a system by permitting access to the Ready List through
the Ready List Root (RLR), both at run time as well as in a post
mortem dump.

The following example, written in assembly language,
illustrates a technique for accessing the Ready List Root.

; MP/M Internal Data Segment Offsets

0 equ 0000h ; time of day
osrlr equ 0005h ; ready list root
osdlr equ 0007h ; delay list root
osdrl equ 0009h ; dispatcher ready list
osplr equ 00OBh ; poll list root
osslr equ 00ODh ; swap list root (not used)
osqlr equ OOOFh ; queue list root
osthrdrt equ 0011h ; thread root
osnmbcns equ 0013h ; number of consoles
oscnsatt equ 0014h ; console attach table
oscnsque equ 0034h ; console queue
osnmbflags equ 0054h ; number of flags
ossysfla equ 0055h ; system flags
osnmbsegs equ 0095h ; number of memory segments
osmsegtbl equ 0096h ; memory segment table
ospdtbl equ 0OB6h ; process descriptor table
osnmblst equ 0256h ; number of list devices
oslstatt equ 0257h ; list attach table
oslstque equ 0277h ; list queue

sysdatadr equ 154 ; get system data page addr

 . . .

mvi c,sysdatadr
call xdos ; HL = system data page
lxi d,00fch ; DE = offset to pointer
dad d
mov e,m
inx h
mov d,m ; DE = base of XDOS intrl dseg
lxi h,osrlr ; HL = offset to Ready List Root
dad d

; HL = Addr of Ready List Root

All Information Presented here is Proprietary to Digital Research

125

MP/M II Programmer's Guide 3.7 XDOS Error Handling

3.7 XDOS Error Handling

The XDOS does not require an error handling capability similar
to that of the BDOS, because XDOS functions involve "logical" or
internal rather than "physical" or external operations. That is,
the XDOS functions are implemented entirely within memory resident
data structures, and any physical or extended "error" encountered
would by definition be catastrophic for the system. Therefore,
those XDOS functions that return a value in register A return a
"boolean", which is a code indicating only whether or not the
function is successful. If for some reason the function is not
successful, the calling process must be able to handle this error
condition. The return codes for XDOS functions are defined in Table
3-7.

 Table 3-7. XDOS Return Codes

Register A Value Meaning

0 Successful operation

FFH Unsuccessful operation

All Information Presented here is Proprietary to Digital Research

126

MP/M II Programmer's Guide 3.8 XDOS Calls: Function 128

3.8 XDOS Function Calls

The Extended Disk Operating System (XDOS) functions are covered
in this section by describing the entry parameters and returned
values for each XDOS function. The XDOS calling conventions are
identical to those of the BDOS which are described in Section 2.1.3.

FUNCTION 128:ABSOLUTE MEMORY
 REQUEST

Entry Parameters:
Register C: 80H

DE: MD Address

Returned Value:
Register A: Return code
MD filled in

The Absolute Memory Request function allocates to the calling
process a segment of memory specified by the Memory Descriptor
parameter. This function allows the Command Line Interpreter (CLI)
to load non-relocatable programs, such as CP/M *.COM files, based at
the absolute TPA address of 0100H. The calling process passes the
address of a Memory Descriptor in register pair DE, setting the base
byte; the XDOS sets the other bytes upon return. The Memory
Descriptor data structure is described in Section 3.4.

Function 128 returns a "boolean" indicating whether or not the
allocation was successful. A returned value of FFH indicates
failure to allocate the requested memory, and a value of 0 indicates
success. If the Absolute Memory Request is a success, the memory
segment index of the calling process is set to reflect that of the
allocated memory. Thus, it is extremely important that this
function only be invoked from a process residing in common memory.
Note that base and size specify base page address and page size
where a page is 256 bytes.

All Information Presented here is Proprietary to Digital Research

127

MP/M II Programmer's Guide 3.8 XDOS Calls: Function 129

FUNCTION 129: RELOCATABLE MEMORY
 REQUEST

Entry Parameters:
Register C: 81H

DE: MD Address

Returned Value:
Register A: Return code
MD filled in

The Relocatable Memory Request function allocates the requested
contiguous memory to the calling process. The calling process
passes the address of a Memory Descriptor in register pair DE,
setting the size byte; the XDOS sets the other bytes upon return

Function 129 returns a "boolean" in register A indicating
whether or not the allocation was successful. A returned value of
FFH indicates failure to satisfy the request, and a value of 0
indicates success. If the Relocatable Memory Request is a success,
the memory segment index of the calling process is set to reflect
that of the allocated memory. Thus, it is extremely important that
this function only be invoked from a process residing in common
memory.

Note that base and size specify base page address and page size
where a page is 256 bytes.

FUNCTION 130: MEMORY FREE

Entry Parameters:
Register C: 82H
DE: MD Address

The Memory Free function returns the specified memory segment
owned by the calling process back to the operating system. The
calling process passes the address of a Memory Descriptor in
register pair DE. Function 130 does not return a value in register
A.

All Information Presented here is Proprietary to Digital Research

128

MP/M II Programmer's Guide 3.8 XDOS Calls: Function 131

FUNCTION 131: POLL

Entry Parameters:
Register C: 83H
 E: Device Number

The Poll function polls the specified device until a ready
condition is received. The calling process relinquishes the CPU
until the poll is satisfied, allowing other processes to execute.

Function 131 is intended for use in the custom XIOS because the
XIOS associates the device number with the actual code executed for
the poll operation. This does not exclude other uses of the Poll
function, but it does mean that an application program making a poll
call must be matched to a specific XIOS.

FUNCTION 132: FLAG WAIT

Entry Parameters:
Register C: 84H

E: Flag Number

Returned Value:
Register A: Return code

The Flag Wait function causes a process to relinquish the CPU
until the flag specified in the call is set. The flag wait
operation is used in an interrupt-driven system to cause the calling
process to "wait" until a specific interrupt condition occurs.

Function 132 returns a "boolean" in register A indicating
whether or not a successful flag wait was performed. A returned
value of FFH indicates that no flag wait occurred because another
process was already waiting on the specified flag. A returned value
of 0 indicates success.

Note that flags are non-queued, which means that access to
flags must be carefully managed. Typically, the physical interrupt
handlers set flags while a single process waits on each flag.

All Information Presented here is Proprietary to Digital Research

129

MP/M II Programmer's Guide 3.8 XDOS Calls: Function 133

FUNCTION 133: FLAG SET

Entry Parameters:
Register C: 85H

E: Flag Number

Returned Value:
Register A: Return code

The Flag Set function "wakes up" a waiting process. The Flag
Set function is usually called by an interrupt service routine after
servicing an interrupt and determining which flag is to be set.

Function 133 returns a "boolean" in register A indicating
whether or not a successful flag set was performed. A returned
value of FFH indicates that a flag over-run has occurred; that is,
the flag was already set when a flag set function was called. A
returned value of 0 indicates success.

FUNCTION 134: MAKE QUEUE

Entry Parameters:
Register C: 86H
DE: QCB Address

The Make Queue function sets up a Queue Control Block. A queue
is configured as either circular or linked depending upon the
message size. Message sizes of 0 to 2 bytes use circular queues
while message sizes of 3 or more bytes use linked queues.

The calling process passes the address of the Queue Control
Block (QCB) in register pair DE. The QCB must contain the queue
name, message length, number of messages, sufficient space to
accommodate the messages, and links if the queue is linked.

The QCB data structures for both circular and linked queues are
described in Section 3.3.

Queues can only be created either in common memory or by user
programs in non-banked systems because queues are all maintained on
a linked list that must be accessible at all times. That is, a
queue cannot reside in a memory segment that is bank-switched.
However, a queue created in common memory can be accessed by all
system and user programs.

All Information Presented here is Proprietary to Digital Research

130

MP/M II Programmer's Guide 3.8 XDOS Calls: Function 135

FUNCTION 135: OPEN QUEUE

Entry Parameters:
Register C: 87H

DE: UQCB Address

Returned Value:
Register A: Return code

The Open Queue function places the actual QCB address into the
User Queue Control Block (UQCB) . Function 135 allows a user program
to access queues by specifying only the queue name. The process
obtains the actual address of the itself by calling Function 135,
and then reads from or writes to the queue using the XDOS queue read
and write functions.

Function 135 returns a "boolean" in register A indicating
whether or not the open queue operation was successful. A returned
value of OFFH indicates failure, while a 0 indicates success.

The user Queue Control Block data structure is described in
Section 3.3.

FUNCTION 136: DELETE QUEUE

Entry Parameters:
Register C: 88H

DE: QCB Address

Returned Value:
Register A: Return Code

The Delete Queue function removes the specified queue from the
queue list. The calling process passes the address of QCB for the
specified queue in register pair DE.

Function 136 returns a "boolean" in register A indicating
whether or not the queue was deleted. A returned value of OFFH
indicates failure, usually because some process is DQing from the
queue. A returned value of 0 indicates success.

All Information Presented here is Proprietary to Digital Research

131

MP/M II Programmer's Guide 3.8 XDOS Calls: Function 137

FUNCTION 137: READ QUEUE

Entry Parameters:
Register C: 89H

DE: UQCB Address

Returned Value:
Message read

The Read Queue function reads a message from the queue
specified by the UQCB. If no message is available at the queue, the
calling process relinquishes the CPU until another process writes a
message at the queue. The calling process passes the address of the
UQCB in register pair DE, and when a message becomes available at
the queue, Function 137 copies it into the buffer addressed by the
MSGADR field of the UQCB.

FUNCTION 138: CONDITIONAL READ
 QUEUE

Entry Parameters:
Register C: 8AH

DE: UQCB Address

Returned Value:
Register A: Return code
Message read if available

The Conditional Read Queue function reads a message from a
queue specified by the UQCB only when the queue contains a message.
This function can be used to prevent the calling process from being
suspended from execution if no messages exist. The calling process
passes the address of the UQCB in register pair DE, and if a message
is available at the queue, Function 138 copies it into the buffer
addressed by the MSGADR field of the UQCB.

Function 138 returns a "boolean" in register A indicating
whether or not a message was available at the queue. A returned
value of OFFH indicates no message, while a zero indicates that a
message was available and was copied into the user buffer.

All Information Presented here is Proprietary to Digital Research

132

MP/M II Programmer's Guide 3.8 XDOS Calls: Function 139

FUNCTION 139: WRITE QUEUE

Entry Parameters:
Register C: 8BH

DE: UQCB Address
Message to be sent

The Write Queue function writes a message to a queue specified
by the UQCB. If no buffers are available at the queue, the calling
process relinquishes the CPU until one becomes available. The
calling process passes the address of the UQCB in register pair DE,
and when a buffer is available at the queue, the function copies the
buffer addressed by the MSGADR field of the UQCB into the queue.
Function 139 does not return a value in register A.

FUNCTION 140: CONDITIONAL WRITE
 QUEUE

Entry Parameters:
Register C: 8CH

DE: UQCB Address
Message to be sent

Returned Value:
Register A: Return code

The Conditional Write Queue function writes a message to queue
specified by the UQCB only when a buffer is available. This
function can prevent the calling process from being suspended from
execution if the queue buffers are full. The calling process passes
the address of the UQCB in register pair DE, and if a buffer is
available at the queue, the function copies the buffer addressed by
the MSGADR field of the UQCB into the actual queue.

Function 140 returns a "boolean" in register A indicating
whether or not a buffer was available at the queue. A returned
value of OFFH indicates no buffer, while a zero indicates that a
buffer was available and that the user buffer was copied into it.

All Information Presented here is Proprietary to Digital Research

133

MP/M II Programmer's Guide 3.8 XDOS Calls: Function 141

FUNCTION 141: DELAY

Entry Parameters:
Register C: 8DH

DE: Number of Ticks

The Delay function delays execution of the calling process for
the specified number of system time units, thus allowing other
processes to use the CPU while the specified period of time elapses.
Use of Function 141 avoids the typical programmed delay loop, which
should be avoided under MP/M II because it consumes the CPU.

The system time unit is typically 60 Hz (16.67 milliseconds),
but can vary according to application. For example, it is likely
that in Europe it would be 50 Hz (20 milliseconds).

The calling process passes a 16-bit integer in register pair DE
which specifies the number of ticks the process is to be delayed.
Since calling the delay procedure is usually asynchronous to the
actual time base itself, there is up to one tick of uncertainty in
the exact amount of time delayed. Thus, a delay of 10 ticks
guarantees a delay of at least 10 ticks, but it may be nearly 11
ticks.

FUNCTION 142: DISPATCH

Entry Parameters:
Register C: 8EH

The Dispatch function causes MP/M II to determine the highest
priority ready process, and then give that process the CPU.
Function 142 is intended for non-interrupt driven systems in which
it is desirable to enable a compute-bound process to periodically
relinquish the CPU. Since all user processes usually run at the
same priority, invoking Dispatch at various points in a program
allows other processes access to the CPU in a round-robin fashion.
Dispatch can also safely enable interrupts following the execution
of a disable interrupt instruction (DI).

There are no parameters passed in register pair DE, and no
values returned in register A. The process calls Function 142 by
passing the function number 8EH in register C. Note: Calling
Dispatch does not remove the calling process from the Ready List.

All Information Presented here is Proprietary to Digital Research

134

MP/M II Programmer's Guide 3.8 XDOS Calls: Function 143

FUNCTION 143: TERMINATE PROCESS

Entry Parameters:
Register C: 8FH

D: Conditional
Memory Free

E: Terminate Code

The Terminate Process function terminates the calling process,
which passes parameters in registers D and E, indicating whether or
not the process should be terminated if it is a system process, and
if the memory segment owned by the calling process is to be
released. A OFFH in the E register indicates that the process
should be unconditionally terminated; a zero indicates that only a
user process is to be deleted. If the calling process is a user
process and register D contains a OFFH, the memory segment owned by
the process is not released. Thus, a process that is a child of a
parent process, both of which are executing in the same memory
segment, can terminate without freeing the memory segment that is
also occupied by the parent.

Function 143 does not return any value in register A. The
calling process simply ceases to exist as far as MP/M II is
concerned.

FUNCTION 144: CREATE PROCESS

Entry Parameters:
Register C: 90H

DE: PD Address

Returned Value:
PD filled in

The Create Process function creates one or more processes by
placing the passed Process Descriptors on the MP/M II Ready List.

The calling process passes the address of a Process Descriptor
in register pair DE. The first field of the Process Descriptor is a
link field that can point to another Process Descriptor.

All Information Presented here is Proprietary to Digital Research

135

MP/M II Programmer's Guide 3.8 XDOS Calls: Function 144

Processes can only be created either in common memory or by
user programs in non-banked systems because Process Descriptors are
all maintained on linked lists that must be accessible at all times.

The Process Descriptor data structure is described in Section
3.2.

FUNCTION 145: SET PRIORITY

Entry Parameters:
Register C: 91H

E: Priority

The Set Priority function sets or changes the priority of the
calling process to that of the passed parameter. The calling
process passes the priority in register E. Function 145 does not
return a value in register A.

This function is useful when a process needs to have a high
priority during an initialization phase, but after that is to run at
a lower priority.

FUNCTION 146: ATTACH CONSOLE

Entry Parameters:
Register C: 92H

The Attach Console function attaches the console specified in
the CONSOLE field of the Process Descriptor to the calling process.
If the console is already attached to some other process, the
calling process relinquishes the CPU until the other process
detaches from the console. When the console becomes free and the
calling process is the highest priority process waiting for the

console, the attach operation takes place.

There are no parameters passed in registers D and E, and no
values returned in register A. The process calls Function 146 by
passing the function number 92H in register C.

All Information Presented here is Proprietary to Digital Research

136

MP/M II Programmer's Guide 3.8 XDOS Calls: Function 147

FUNCTION 147: DETACH CONSOLE

Entry Parameters:
Register C: 93H

The Detach Console function detaches from the calling process
the console specified in the CONSOLE field of the Process
Descriptor. If the console is not currently attached, no action
takes place.

There are no parameters passed in registers D and E, and no
values returned in register A. The process calls Function 147 by
passing the function number 93H in register C.

FUNCTION 148: SET CONSOLE

Entry Parameters:
Register C: 94H

E: Console

The Set Console function detaches the currently attached
console and then attaches the specified console. If the console to
be attached is already attached to another process, the calling
process relinquishes the CPU until the other process detaches from
the console. When the console becomes available and the calling
process is the highest priority process waiting for the console, the
attach operation takes place.

The calling process passes the number of the console to be
attached in register E. The function does not return a value in
register A.

All Information Presented here is Proprietary to Digital Research

137

MP/M II Programmer's Guide 3.8 XDOS Calls: Function 149

FUNCTION 149: ASSIGN CONSOLE

Entry Parameters:
Register C: 95H

DE: APB Address

Returned Value:
Register A: Return code

The Assign Console function unconditionally assigns a console
to a specified process. That is, the assignment is made regardless
of whether or not any other process is currently waiting to attach
the console. The calling process passes the address of a data
structure called the Assignment Parameter Block (APB). This data
structure contains the console number for the assignment, an 8
character ASCII process name, and a "boolean" indicating whether or
not a match with the CONSOLE field of the Process Descriptor is
required (true or OFFH indicates it is required).

It is extremely important to note that the calling process must
own the console or the console must be currently unattached for this
function to perform properly.

Function 149 returns a "boolean" in register A indicating
whether or not the assignment was made. A returned value of OFFH
indicates failure to assign the console, either because a Process
Descriptor with the specified name could not be found, or because a
match was required, and the CONSOLE field of the Process Descriptor
did not match the specified console. A returned value of zero
indicates a successful assignment.

All Information Presented here is Proprietary to Digital Research

138

MP/M II Programmer's Guide 3.8 XDOS Calls: Function 150

FUNCTION 150: SEND CLI COMMAND

Entry Parameters:
Register C: 96H

DE: CLICMD Address

The Send CLI Command function permits running processes to send
command lines to the Command Line Interpreter (see Section 1.5).
The calling process passes the address of a data structure called
CLI Command (CLICMD) in register pair DE. This data structure
contains: the default disk/user code, the console and the command
line. Initialization of the CLICMD data structure is shown below in
both PL/M and assembly language.

PL/M:
Declare CLI$command structure (
disk$user byte,
console byte,
command$line (129) byte);

Assembly Language:
CLICMD:

DS 1 ;default disk / user code
DS 1 ;console number
DS 129 ;command line

The default disk/user code is the first byte of the data structure.
The high-order four bits contain the default disk drive and the low
order four bits contain the user code. The second byte of the data
structure contains the console number for the process being
executed. The ASCII command line begins with the third byte and is
terminated with a null byte.

It is extremely important to note that the CLI must own the
console specified in the parameter of the Send CLI Command function.
This assignment of the console to the CLI can be done with the
Function 149, Assign Console.

Function 150 does not return a value in register A.

All Information Presented here is Proprietary to Digital Research

139

MP/M II Programmer's Guide 3.8 XDOS Calls: Function 151

FUNCTION 151: CALL RESIDENT
 SYSTEM PROCEDURE

Entry Parameters:
Register C: 97H

DE: CPB Address

Returned Value:
Registers HL: Return code

The Call Resident System Procedure function permits a process
to call the optional Resident System Procedures (RSPs) . The calling
process passes the address of a data structure called the Call
Parameter Block, (CPB) in register pair DE. The CPB data contains
the address of an 8-character ASCII RSP name followed by a two-byte
parameter that the calling process passes to the RSP.
Initialization of the CPB data structure is shown below in both PL/M
and assembly language.

PL/M:
Declare CALL$PB structure (
Name$adr address,
Param address) initial (
.name,O);

Declare name (8) byte initial (
'Procl ‘);

Assembly Language:

CALLPB:
DW NAME
DW 0 ;parameter

NAME:
DB 'Procl ‘

Function 151 returns a 0001H in register pair HL if the RSP
called is not present. Otherwise, it returns the code passed back
from the RSP. Typically, a returned value of FFH indicates failure
while a zero indicates success.

All Information Presented here is Proprietary to Digital Research

140

MP/M II Programmer's Guide 3.8 XDOS Calls: Function 152

FUNCTION 152: PARSE FILENAME

Entry Parameters:
Register C: 98H

DE: PFCB Address

Returned Value:
Registers HL: Return code
Parsed file control block

The Parse Filename function parses an ASCII file specification
(FILENAME) and prepares a File Control Block (FCB). The calling
process passes the address of a data structure called the Parse
Filename Control Block, (PFCB) in register pair DE. The PFCB
contains the address of the ASCII filename string followed by the
address of the target FCB. Initialization of the PFCB data
structure is shown below in both PL/M and assembly language.

PL/M:
Declare ParseFNCB structurem (
File$name$adr address,
FCB$adr address) initial (
.file$name,.fcb);

Declare file$name (128) byte;
Declare fcb (36) byte;

Assembly Language:

PFNCB:
DW FLNAME
DW FCB

FLNAME:
DS 128

FCB:
DS 36

Function 152 assumes the file specification to be in the following
form:

{D:}{FILENAMEH}{.TYP}{;PASSWORD}

where those items enclosed in curly brackets are optional.

The Parse Filename function parses the first file specification
it finds in the input string. The function first eliminates leading
blanks and tabs. The function then assumes that the file
specification ends on the first delimiter it hits that is out of
context with the specific field it is parsing. For instance, if it

All Information Presented here is Proprietary to Digital Research

141

MP/M II Programmer's Guide 3.8 XDOS Calls: Function 152

finds a colon (:) and it is not the second character of the file
specification, the colon delimits the whole file specification. The
function recognizes the following characters as delimiters:

space
tab
return
null
; (semicolon) - except before password field
= (equal)
< (less than)
> (greater than)
. (dot) - except after filename and before type
: (colon) - except before filename and after drive
, (comma)
[(left square bracket)
] (right square bracket)
/ (slant)
$ (dollar)

If the function reaches a non-graphic character (in the range 1
through 31), not listed above, it treats it as an error.

The Parse Filename function initializes the specified FCB as
follows:

byte 0 The drive field is set to the specified
drive. If the drive is not specified, the
default value is used. O=default, I=A,
2=B, etc.

byte 1-8 The name is set to the specified filename.
All letters are converted to upper-case.
If the name is not eight characters long,
the remaining bytes in the filename field
are padded with blanks. If the filename
has an asterisk (*), all remaining bytes
in the filename field are filled in with
question marks (?). An error occurs if
the filename is more than eight bytes
long.

byte 9-11 The type is set to the specified filetype.
If no type is specified, the type field is
initialized to blanks. All letters are
converted to upper-case. If the type is
not three characters long, the remaining
bytes in the file type field are padded
with blanks. If an asterisk (*) occurs,
all remaining bytes are filled in with
question marks (?). An error occurs if
the type field is more than 3 bytes long.

All Information Presented here is Proprietary to Digital Research

142

 MP/M II Programmer's Guide 3.8 XDOS Calls: Function 152

byte 12-15 Filled in with zeroes.

byte 16-23 The password field is set to the specified
password. If no password is specified, it
is initialized to blanks. If the password
is not eight characters long, remaining
bytes are padded with blanks. All letters
are converted to upper-case. If the
password field is more than eight bytes
long, an error occurs.

byte 24-25 The offset of the beginning of the
password in the FILENAME string is placed
here. If no password is specified, this
field is set to zero. It should be noted
that the password indicated by this field
is in the FILENAME string, which is not
modified by the Parse Filename function.
If there are any lower-case characters in
the password, they will have to be
converted to upper-case to make it the
same as the password field of the FCB.

byte 26 The number of characters in the specified
password is placed here. If no password
is specified, this field is set to zero.

If an error occurs, all fields that have not been parsed are
set to their default values, and the function returns a OFFFFh in
register pair HL indicating the error.

On a successful parse, the Parse Filename function checks the
next item in the FILENAME string. It skips over trailing blanks and
tabs and looks at the next character. If the character is a null or
carriage return, it returns a 0 indicating the end of the FILENAME
string. If the next character is a delimiter, it returns the
address of the delimiter. If the next character is not a delimiter,
it returns the address of the delimiting blank or tab.

If the first non-blank or non-tab character in the FILENAME
string is a null (0) or carriage return, the Parse Filename
function returns a zero indicating the end of string, and the FCB is
initialized to its default values.

If the Parse Filename function is to be used to parse a
subsequent filename in the FILENAME string, the returned address
should be advanced over the delimiter before placing it in the PFCB.

All Information Presented here is Proprietary to Digital Research

143

MP/M II Programmer's Guide 3.8 XDOS Calls: Function 153

FUNCTION 153: GET CONSOLE NUMBER

Entry Parameters:
Register C: 99H

Returned Value:
Register A: Console Number

The Get Console Number function obtains the value of the
CONSOLE field from the Process Descriptor of the calling process.
The calling process passes the function number 99H in register C,
and the function returns the console number in register A.

FUNCTION 154: SYSTEM DATA ADDRESS

Entry Parameters:
Register C: 9AH

Returned Value:
Registers HL: System Data
 Page Address

The System Data Address function returns the base address of
the system data page. The system data page resides in the top 256
bytes of the MP/M II Operating System. It contains configuration
information entered by the MP/M II GENSYS program as well as run
time data including the submit flags. The contents of the system
data page are described in Section 3.5.

The calling process passes the function number 9AH in register
C, and the function returns the base address of the system data page
in register pair HL.

All Information Presented here is Proprietary to Digital Research

144

MP/M II Programmer's Guide 3.8 XDOS Calls: Function 155

FUNCTION 155: GET DATE AND TIME

Entry Parameters:
Register C: 9BH

DE: TOD Address

Returned Value:
Time and date

The Get Date and Time function returns the current encoded date
and time. The calling process passes the address of a data
structure called the TOD in register pair DE. The TOD data
structure represents the date as a 16-bit integer, with day 1
corresponding to January 1, 1978. It represents the time as three
bytes: hours, minutes, and seconds, stored as two BCD digits.

Initialization of the TOD data structure is shown below in both

PL/M and assembly language.

PL/M:
Declare TOD structure (
date address,
hour byte,
min byte,
sec byte);

Assembly Language:
TOD:

DS 2 ;Date
DS 1 ;Hour
DS 1 ;Minute
DS 1 ;Second

All Information Presented here is Proprietary to Digital Research

145

MP/M II Programmer's Guide XDOS Calls: Function 156

FUNCTION 156: RETURN PROCESS
 DESCRIPTOR ADDRESS

Entry Parameters:
Register C: 9CH

Returned Value:
Register HL: PD Address

The Return Process Descriptor Address function obtains the
address of the calling processes process descriptor. By
definition, this is the head of the ready list.

FUNCTION 157: ABORT SPECIFIED
 PROCESS

Entry Parameters:
Register C: 9DH
Register DE: APB Address

Returned Value:
Register A: Return Code

The Abort Specified Process function permits a process to
terminate another specified process. The calling process passes the
address of a data structure called an Abort Parameter Block (ABTPB)
in register pair DE. Initialization of the ABTPB is shown below in
both PL/M and assembly language.

PL/M:
Declare Abort$paramter$block structure (
pdadr address,
termination$code address,
name (8) byte,
console byte);

Assembly Language:
APB:

DS 2 ;process descriptor address
DS 2 ;termination code
DS 8 ;process name
DS 1 ;console used by process

All Information Presented here is Proprietary to Digital Research

146

MP/M II Programmer's Guide 3.8 XDOS Calls: Function 157

If the Process Descriptor address is known, it can be filled in
and the process name and console can be omitted. Otherwise, the
Process Descriptor address field should be a 0, and the process name
and console must be specified. In either case, the termination
code, which is the parameter passed to Function 143, Terminate
Process, must be supplied.

FUNCTION 158: ATTACH LIST

Entry Parameters:
Register C: 9EH

The Attach List function attaches the list device specified in
the CONSOLE/LIST field of the Process Descriptor to the calling
process. If the list device is already attached to some other
process, the calling process relinquishes the CPU until the other
process detaches from the list device. When the list device becomes
free and the calling process is the highest priority process waiting
for the list device, the attach operation takes place.

The process calls Function 158 by passing the function number
9EH in register C. The function does not return a value in register
A.

FUNCTION 159: DETACH LIST

Entry Parameters:
Register C: 9FH

The Detach List function detaches the list device specified in
the CONSOLE/LIST field of the Process Descriptor from the calling
process. If the list device is not currently attached, no action
takes place.

The process calls Function 159 by passing the function number
9FH in register C. The function does not return a value in register
A.

All Information Presented here is Proprietary to Digital Research

147

MP/M II Programmer's Guide 3.8 XDOS Calls: Function 160

FUNCTION 160: SET LIST

Entry Parameters:
Register C: AOH
E: List Device

The Set List function detaches the list device currently
attached to the calling process and then attaches the specified list
device. If the list device to be attached is already attached to
another process, the calling process relinquishes the CPU until the
other process detaches from the list device. When the list device
becomes free and the calling process is the highest priority process
waiting for the device, the attach operation takes place.

The calling process passes the number of the list device to be
attached in register E. The function does not return a value in
register A.

FUNCTION 161: CONDITIONAL ATTACH
 LIST

Entry Parameters:
Register C: AlH

Returned Value:
Register A: Return Code

The Conditional Attach List function attaches the list device
specified in the CONSOLE/LIST field of the Process Descriptor to the
calling process only if the list device is currently unattached.

If the list device is currently attached to another process,
the function returns a value of OFFH in register A, indicating that
the list device could not be attached. The function returns a value
of zero to indicate that either the list device is already attached
to the process, or that it was unattached and a successful attach
operation was made.

All Information Presented here is Proprietary to Digital Research

148

MP/M II Programmer's Guide 3.8 XDOS Calls: Function 162

FUNCTION 162: CONDITIONAL ATTACH
 CONSOLE

Entry Parameters:
Register C: A2H

Returned Value:
Register A: Return Code

The Conditional Attach Console function attaches the console
specified in the CONSOLE/LIST field of the Process Descriptor to the
calling process only if the console is currently unattached.

If the console is currently attached to another process, the
function returns a value of OFFH in register A, indicating that the
console could not be attached. The function returns a value of zero
to indicate that either the console is already attached to the
process or that it was unattached and a successful attach operation
was made.

All Information Presented here is Proprietary to Digital Research

149

MP/M II Programmer's Guide 3.8 XDOS Calls: Function 163

FUNCTION 163: RETURN MP/M VERSION
 NUMBER

Entry Parameters:
Register C: A3H

Returned Value:
Register HL: Version Number

The Return MP/M Version Number function provides information
that allows version independent programming. The function returns a
two-byte value, with H = 01 for MP/M II and L the MP/M II revision
level.

FUNCTION 164: GET LIST NUMBER

Entry Parameters:
Register C: A4H

Returned Value:
Register A: List Number

The Get List Number function returns the value of the list
device from the Process Descriptor of the calling process. The
process calls Function 164 by passing the function number A4H in
register C. The function returns the list device number in register
A.

All Information Presented here is Proprietary to Digital Research

150

All Information Presented here is Proprietary to Digital Research

151

Section 4
ASM, An 8080 Assembler

4.1 Overview

ASM reads an assembly language source file from the disk and
produces 8080 machine language in Intel hex format. Invoke ASM by
entering an ASM command in either of the following forms:

ASM filename

ASM filename.parms

In both cases, the assembler assumes there is a file on the disk
with the name:

filename.ASM

that contains an 8080 assembly language source file. The first and
second forms shown above differ only in that the second form passes
parameters to the assembler to control source file access and hex
and print file destinations.

In either case, MP/M II loads ASM, which prints the message:

MP/M ASSEMBLER VER 2.0

where n.n is the current version number. In response to the
command, the assembler reads the source file with assumed filetype
"ASM" and creates two output files:

filename.HEX

filename.PRN

The HEX file contains the machine code corresponding to the original
program in Intel hex format, and the PRN file contains an annotated
listing showing generated machine code, error flags, and source
lines. If errors occur during translation, they are listed in the
PRN file as well as at the console.

The second command form can redirect input and output files
from their defaults. The "parms" portion of the command is a three
letter group that specifies the origin of the source file, the
destination of the hex file, and the destination of the print file.
The form is:

filename.plp2p3

where pl, p2, and p3 are replaced by single letters whose meanings
are defined in Table 4-1.

All Information Presented here is Proprietary to Digital Research

152

MP/M II Programmer's Guide 4.1 overview

 Table 4-1. ASM Parameters

Symbol Valid Letters Meaning

P1 A,B,. . ,P designates the drive that
 contains the source file

p2 A,B,. . ,P designates the drive that
 receives the hex file.

z skips the generation of the hex
 file

p3 A,B,. . ,P designates the drive that
 receives the print file

X places the listing at the console

 z skips generation of the print file

Thus, the command:

ASM PROG.AAA

indicates that the assembler takes the source file (PROG.ASM) from
drive A, and also creates the hex (PROG.HEX) and print (PROG.PRN)
files on drive A. This command is the default if the assembler is
run from drive A without the optional parameters, as shown below:

OA>ASM PROG
The command:

OA>ASM PROG.ABX

indicates that the assembler takes the source file from drive A,
place the hex file on drive B and sends the listing file to the
console. The command:

OA>ASM PROG.BZZ

takes the source file from drive B and skips the generation of the
hex and print files. Use this command for a fast execution of the
assembler to check program syntax.

The source program format is compatible with the Intel 8080
assembler, although macros are not supported. However, certain
extensions in the MP/M II assembler make it easier to use. These
extensions are described below.

All Information Presented here is Proprietary to Digital Research

153

MP/M II Programmer's Guide 4.2 Program Format

4.2 Program Format

An assembly language program acceptable as input to the ASM
assembler consists of a sequence of statements of the form:

line# label operation operand ;comment

where any or all the fields can be present in a particular instance.
Each assembly language statement must be terminated with a carriage
return and line feed (ED automatically inserts a line feed) or with
an exclamation mark, !, which is treated as an end-of-line by the
assembler. Thus, multiple assembly language statements can be
written on the same physical line if separated by exclamation marks.

The line# is an optional decimal integer value representing the
source program line number, which is allowed on any source line.
Because these line numbers are inserted automatically by line
oriented editors, ASM ignores this field if present. The label
field takes either of the forms below:

identifier
identifier:

Labels are optional, except where noted in particular statement
types. An identifier is a sequence of any alphanumeric characters,
but the first character must be alphabetic. You can use identifiers
freely to label elements such as program steps and assembler
directives. only the first 16 characters are significant in an
identifier, except for an embedded dollar symbol, $, which can be
used to improve readability of the name. All lower-case alphabetics
are treated as if they were upper-case. optionally, a colon can
follow the identifier. Thus, the following are all valid labels:

X xy long$name
X: yxl: longer$named$data:
XlY2 Xlx2 x234$5678$9012$3456:

The operation field contains either an assembler directive, a
pseudo operation, or an 8080 machine operation code. The pseudo
operations and machine operation codes are described in Section 4.5.
Section 4.4 describes the assembler directives.

The operand field of the statement generally contains an
expression formed out of constants and labels, along with arithmetic
and logical operations on these elements. The complete details of
properly formed expressions are given in Section 4.3.

The comment field can contain any characters following the
semicolon, ;, until the next real or logical end-of-line. These
characters are read and listed, but are otherwise ignored by the
assembler. The MP/M assembler also treats statements that begin
with an asterisk, *, in column one as comment statements. These are
listed and ignored in the assembly process.

All Information Presented here is Proprietary to Digital Research

154

MP/M II Programmer's Guide 4.2 Program Format

The assembly language source program is a sequence of
statements as defined above, optionally terminated by an END
statement. ASM ignores statements following END.

4.3 Forming the Operand

To completely describe the operation codes and pseudo
operations, it is necessary to first present the form of the operand
field, because it appears in nearly all statements. Expressions in
the operand field consist of simple operands (labels, constants, and
reserved words), combined in properly formed subexpressions by
arithmetic and logical operators. ASM evaluates each expression as
the assembly proceeds. Each expression must evaluate to a 16-bit
value. Further, the number of significant digits in the result must
not exceed the intended use. That is, if an expression is to be
used in a byte move immediate instruction, then the most significant
8 bits of the expression must be zero. The restrictions on the
expression significance are given with the individual instructions.

4.3.1 Labels

As discussed above, a label is an identifier that appears as
part of a particular statement. In general, the label is given a
value determined by the type of statement that it precedes. If the
label appears in a statement that generates machine code or reserves
memory space (for example, a MOV instruction or a DS pseudo
operation) , then the label is given the value of the program address
that it labels. If the label precedes an EQU or SET, then ASM gives
the label the value that results from evaluating the operand field.
Except for the SET statement, an identifier can label only one
statement.

When a label appears in the operand field, ASM substitutes its
value during assembly. This value can then be combined with other
operands and operators to form the operand field for a particular
instruction.

4.3.2 Numeric Constants

A numeric constant is a 16-bit value in one of several bases.
The base, called the radix of the constant, is denoted by a trailing
radix indicator. The radix indicators recognized by ASM are defined
in Table 4-2, below.

All Information Presented here is Proprietary to Digital Research

155

MP/M II Programmer's Guide 4.3 Forming the Operand

 Table 4-2. ASM Radix Indicators

Indicator Base

B binary constant (base 2)
0 octal constant (base 8)
Q octal constant (base 8)
D decimal constant (base 10)
H hexadecimal constant (base 16)

Q is accepted as an alternate radix indicator for octal numbers to
minimize confusion between the letter 0 and the digit 0. Any
numeric constant that does not terminate with a radix indicator is
assumed to be a decimal constant.

A constant is thus composed as a sequence of digits, followed
by an optional radix indicator, where the digits are in the
appropriate range for the radix. That is, binary constants must be
composed of the digits 0 and 1 octal constants can contain digits in
the range 0-7, while decimal constants contain decimal digits.
Hexadecimal constants contain decimal digits as well as hexadecimal
digits A (10D), B (11D), C (12D), D(13D), E (14D), and F(15D).

Note that the leading digit of a hexadecimal constant must be a
decimal digit so that ASM cannot confuse a hexadecimal constant with
an identifier (a leading 0 will always suffice) . A constant
composed in this manner must evaluate to a binary number that can be
contained within a 16-bit counter; otherwise, it is truncated to
the least significant 16-bits. Similar to identifiers, imbedded $'s
are allowed within constants to improve their readability. Finally,
ASM translates the radix indicator to upper-case if a lower-case
letter is encountered. The following are all valid numeric
constants:

1234 1234D 1100B 1111$0000$1111$OOOOB
1234H OFFEH 33770 33$77$22Q
3377o Ofe3h 1234d Offffh

4.3.3 Reserved Words

Several reserved character sequences have predefined meanings
in the operand field of a statement. The names of 8080 registers,
when encountered by the assembler, are translated to the values
shown in Table 4-3.

All Information Presented here is Proprietary to Digital Research

156

MP/M II Programmer's Guide 4.3 Forming the operand

 Table 4-3. 8080 Registers

Register
Letter

Value

A 7
B 0
C 1
D 2
E 3
H 4
L 5
M 6
SP 6

 PSW 6

Again, lower-case names have the same values as their upper-case
equivalents. Machine instructions can also appear in the operand
field; if so, they evaluate to their internal codes. For
instructions that require operands in which the specific operand
becomes a part of the binary bit pattern of the instruction (for
example, MOV A,B), the value of the instruction (in this case MOV)
is the bit pattern of the instruction with zeroes in the optional
fields (e.g., MOV produces 40H).

When the $ symbol occurs in the operand field but not imbedded
within an identifier or numeric constant, its value becomes the
address of the next instruction to generate, not including the
instruction contained within the current logical line.

4.3.4 String Constants

String constants represent sequences of ASCII characters, and
are represented by enclosing the characters within apostrophe
symbols, '. All strings must be fully contained within the current
physical line, thus allowing ! symbols within strings, and must not
exceed 64 characters in length. The apostrophe character can be
included within a string by entering it as a double apostrophe, '',
which becomes a single apostrophe when read by the assembler.
Except for the DB pseudo operation, the string length is restricted
to either one or two characters, which become an 8-bit or 16-bit
value, respectively. Two-character strings become a 16-bit
constant, with the second character as the low-order byte, and the
first character as the high-order byte.

All Information Presented here is Proprietary to Digital Research

157

MP/M II Programmer4s Guide 4.3 Forming the Operand

The value of a character is its corresponding ASCII code (see
Appendix I). There is no case translation within strings, and so
both upper- and lower-case characters can be represented. Note,
however, that only graphic (printing) ASCII characters are allowed
within strings. Some examples of valid strings are

'A' ‘AB’ 'ab’ ‘c’
‘’’’ ‘a’’’ ‘’’’’’ ’’’”’
'Walla Walla Wash.'
'She said ''Hello'' to me.'
'I said ''Hello'' to her.'

4.3.5 Arithmetic and Logical Operators

The operands described above can be combined in normal
algebraic notation using any combination of properly formed
operands, operators, and parenthesized expressions. The operators
recognized in the operand field are summarized in Table 4-4.

 Table 4-4. Arithmetic and Logical Operators

Operation Result

A + b unsigned arithmetic sum of a and b

A - b unsigned arithmetic difference between a and b

 + b unary plus (produces b)

 - b unary minus (identical to 0 - b)

a * b unsigned multiplication of a and b

a / b unsigned division of a by b

a MOD b remainder after a / b

a NOT b logical inverse of b: all O's become l's, l's
become O's - b is a 16-bit value

a AND b bit-by-bit logical and of a and b

a OR b bit-by-bit logical or of a and b

a XOR b bit-by-bit logical exclusive or of a and b

a SHL b the value that results from shifting a to the
left by an amount b, with zero fill

a SHR b the value that results from shifting a to the
 right by an amount b, with zero fill

All Information Presented here is Proprietary to Digital Research

158

MP/M II Programmer's Guide 4.3 Forming the Operand

In Table 4-4, a and b represent simple operands such as labels,
numeric constants, reserved words, one- or-two character strings, or
fully enclosed parenthesized subexpressions such as the examples
below.

10+20 10h+37Q Ll /3 (L2+4) SHR 3
('a' and 5fh) + ‘0’ ('B'+B) OR (PSW+M)
(1+(2+c)) shr (A-(B+1))

Note that all computations performed at assembly time are 16
bit unsigned operations. Thus, -1 is computed as 0-1, which results
in the value Offffh (i.e. , all 1 's) . The resulting expression must
fit the operation code in which it is used. If, for example, the
expression is used in a ADI (add immediate) instruction, then the
high-order eight bits of the expression must be zero. For example,
the operation "ADI -l" produces an error message because -1 becomes
Offffh, which cannot be represented as an 8-bit value. "ADI (-l)
AND OFFH" is acceptable because the "AND" operation zeroes the high
order bits of the expression.

4.3.6 Precedence of Operators

As a convenience to the programmer, ASM assumes that operators
have a relative precedence of application. This allows you to write
expressions without nested levels of parentheses. Expressions have
assumed parentheses defined by relative precedence. The order of
application of operators in unparenthesized expressions is listed
below. operators listed first have highest precedence; they are
applied first in an unparenthesized expression. operators listed
last have lowest precedence. Operators listed on the same line have
equal precedence, and are applied from left to right as they are
encountered in an expression.

1) / MOD SHL SHR
2) - +
3) NOT
4) AND
5) OR XOR

Due to this hierarchy, the expressions shown to the left below are
interpreted by the assembler as the fully parenthesized expressions
shown to the right:

a * b + c (a * b) + c
a + b * c a + (b * c)
a MOD b * c SHL d ((a MOD b) * c) SHL d
a OR b AND NOT c + d SHL e a OR (b AND (NOT (c + (d SHL e))))

All Information Presented here is Proprietary to Digital Research

159

MP/M II Programmer's Guide 4.3 Forming the Operand

Balanced parenthesized subexpressions can always override the
assumed parentheses, and so the last expression above could be
rewritten to force application of operators in a different order,
such as:

(a OR b) AND (NOT c) + d SHL e

This expression has the assumed parentheses:

(a OR b) AND HNOT c) + (d SHL e))

Note that an unparenthesized expression is well-formed only if the
expression which results from inserting the assumed parentheses is
well-formed.

4.4 Assembler Directives

Assembler directives set labels to specific values during the
assembly, perform conditional assembly, define storage areas, and
specify starting addresses in the program. Each assembler directive
is denoted by a "pseudo operation" that appears in the operation
field of the line. The acceptable pseudo operations are summarized
in Table 4-5, and described individually in the following sections.

 Table 4-5. ASM Directives

Symbol Function

ORG set the program or data origin

END end program, optional start address

EQU numeric "equate"

SET numeric "set"

IF begin conditional assembly

ENDIF end of conditional assembly

DB define data bytes

DW define data words

DS define data storage area

All Information Presented here is Proprietary to Digital Research

160

MP/M II Programmer's Guide 4.4 Assembler Directives

4.4.1 The ORG Directive

The ORG statement takes the form:

label ORG expression

where "label" is an optional program label, and "expression" is a
16-bit expression, consisting of operands that are defined ahead of
the ORG statement. The assembler begins machine code generation at
the location specified in the expression. There can be any number
of ORG statements within a particular program; however, there are
no checks to ensure that the programmer is not defining overlapping
memory areas. Note that most programs written for the MP/M II
system begin with the following ORG statement:

ORG 100H

This starts machine code generation at the base of an MP/M II
transient program area. To prepare a page-relocatable program for
execution under MP/M II, assemble the source program twice, adding
100H to each ORG statement during the second assembly. Concatenate
the two hex files generated by the assemblies using PIP, then submit
the concatenated file to the GENMOD utility which produces a file of
type PRL.

If a label is specified in the ORG statement, then the label is
given the value of the expression. This label can then be used in
the operand field of other statements to represent this expression.

4.4.2 The END Directive

The END statement is optional in an assembly language program,
but if it is present it should be the last statement because all
subsequent statements are ignored. The two forms of the END
directive are:

label END
label END expression

where the label is optional. If the first form is used, the
assembly process stops and the default starting address of the
program is taken as 0000. Otherwise, the expression is evaluated
and becomes the program starting address. This starting address is
included in the last record of the Intel-formatted machine code
"hex" file which results from the assembly. Thus, most CP/M
assembly language programs end with the statement:

END 100H

which results in the default starting address of 100H.

All Information Presented here is Proprietary to Digital Research

161

MP/M II Programmer's Guide 4.4 Assembler Directives

4.4.3 The EQU Directive

The EQU (equate) statement sets up synonyms for particular
numeric values. The form is:

label EQU expression

where the label must be present, and must not label any other
statement. The assembler evaluates the expression and assigns this
value to the identifier given in the label field. The identifier is
usually a name that describes the value in a more human-oriented
manner. Then this name can be used throughout the program to
11parameterize" certain functions. Suppose for example, that data
received from a teletype appears on a particular input port, and
data is sent to the teletype through the next output port in
sequence. The series of equate statements could define these ports
for a particular hardware environment, as shown below:

TTYBASE EQU 10H ;BASE PORT NUMBER FOR TTY
TTYIN EQU TTYBASE ;TTY DATA IN
TTYOUT EQU TTYBASE+1 ;TTY DATA OUT

At a later point in the program, the statements that access the
teletype could appear as shown below:

IN TTYIN ;READ TTY DATA TO REG-A
. . .
OUT TTYOUT ;WRITE DATA TO TTY FROM REG-A

This makes the program more readable than if the absolute I/O ports
had been used. Further, if you redefine the hardware environment to
start the teletype communications ports at 7FH instead of 10H, you
need only change the first statement to:

TTYBASE EQU 7FH ;BASE PORT NUMBER FOR TTY

and the program can be reassembled without changing any other
statements.

4.4.4 The SET Directive

The SET statement is similar to the EQU, taking the form:

label SET expression

It differs from SET in that the label can occur on other SET
statements within the program. The expression is evaluated and
becomes the current value associated with the label. Thus, the EQU
statement defines a label with a single value, while the SET
statement defines a value that is valid from the current SET
statement to the next SET statement where the label occurs. SET is
most often used to control conditional assembly.

All Information Presented here is Proprietary to Digital Research

162

MP/M II Programmer's Guide 4.4 Assembler Directives

4.4.5 The IF and ENDIF Directives

The IF and ENDIF statements define a range of assembly language
statements to be included or excluded during the assembly process.
The form is:

IF expression
statement#1
statement#2

 . . .
statement#n
ENDIF

Upon encountering the IF statement, the assembler evaluates the
expression following the IF. All operands in the expression must be
defined ahead of the IF statement. If the least significant bit of
the evaluated expression is a 1, then statement#1 through
statement#n are assembled; if the least significant bit of the
evaluated expression is zero, then the statements are listed but not
assembled. Conditional assembly is often used to write a single
11generic" program which includes a number of possible run-time
environments, with only a few specific portions of the program
selected for any particular assembly. The following program
segments for example, might be part of a program that communicates
with either a teletype or a CRT console (but not both) by selecting
a particular value for TTY before the assembly begins.

TRUE EQU OFFFFH ;DEFINE VALUE OF TRUE
FALSE EQU NOT TRUE ;DEFINE VALUE OF FALSE

TTY EQU TRUE ;TRUE IF TTY, FALSE IF CRT

TTYBASE EQU 10H ;BASE OF TTY I/O PORTS
CRTBASE EQU 20H ;BASE OF CRT I/O PORTS

IF TTY ;ASSEMBLE RELATIVE TO TTYBASE
CONIN EQU TTYBASE ;CONSOLE INPUT
CONOUT EQU TTYBASE+l ;CONSOLE OUTPUT

ENDIF

IF NOT TTY ;ASSEMBLE RELTIVE TO CRTBASE
CONIN EQU CRTBASE ;CONSOLE INPUT
CONOUT EQU CRTBASE+l ;CONSOLE OUTPUT

ENDIF
 . . .

IN CONIN ;READ CONSOLE DATA
 . . .

OUT CONOUT ;WRITE CONSOLE DATA

In this case, the program assembles for an environment where a
Teletype is connected, based at port 10H. The statement defining
TTY could be changed to:

TTY EQU FALSE

and, in this case, the program assembles for a CRT based at port
20H.

All Information Presented here is Proprietary to Digital Research

163

MP/M II Programmer's Guide 4.4 Assembler Directives

4.4.6 The DB Directive

The DB directive allows the programmer to define initialized
storage areas in single precision (byte) format. The statement form
is:

label DB e#l, e#2, ..., e#n

where e#l through e#n are either expressions that evaluate to 8-bit
values (the high-order eight bits must be zero) , or are ASCII
strings of length no greater than 64 characters. There is no
practical restriction on the number of expressions included on a
single source line. The expressions are evaluated and placed
sequentially into the machine code file starting at the current
program address generated by the assembler. String characters are
similarly placed into memory starting with the first character and
ending with the last character. Strings of length greater than two
characters cannot be used as operands in more complicated
expressions; that is, they must stand alone between the commas.
Note that ASCII characters are always placed in memory with the
parity bit reset (0), and that there is no translation from lower
to upper-case within strings. The optional label can reference the
data area throughout the remainder of the program. Examples of
valid DB statements are:

data: DB 0,1,2,3,4,5
DB data and Offh,5,377Q,1+2+3+4

signon: DB ‘please type your name',cr,lf,O
DB 'AB' SHR 8, 'C', 'DE' AND 7FH

4.4.7 The DW Directive

The DW statement is similar to the DB statement except that it
initializes two byte words of storage instead of single bytes. The
form is:

label DW e#1, e#2, . . ., e#n

e#l through e#n are expressions that evaluate to 16-bit results.
Note that ASCII strings of one or two characters are allowed, but
strings longer than two characters are not acceptable. In all
cases, the data storage is consistent with the 8080 processor: the
least significant byte of the expression is stored first in memory,
followed by the most significant byte. Here are some examples:

doub: DW Offefh,doub+4,signon-$,255+255
DW ‘a’,5,’ab','CD',6 shl 8 or llb

All Information Presented here is Proprietary to Digital Research

164

MP/M II Programmer's Guide 4.4 Assembler Directives

4.4.8 The DS Directive

The DS statement reserves an area of uninitialized memory, and
takes the form:

label DS expression

where the label is optional. The assembler begins subsequent code
generation after the area reserved by the DS. Thus, the DS
statement given above has exactly the same effect as the following
statements:

label: EQU $;LABEL VALUE IS CURRENT CODE LOCATION
ORG $+expression ;MOVE PAST RESERVED AREA

4.5 Operation Codes

Assembly language operation codes are the principal part of
assembly language programs, and form the operation field of the
instruction. In general, ASM accepts all the standard mnemonics for
the Intel 8080 microcomputer, which are given in detail in the Intel
manual "8080 Assembly Language Programming Manual." Labels are
optional on each input line and, if included, take the value of the
instruction address immediately before the instruction is issued.
Table 4-7 lists the individual operators briefly, but you should
reference the Intel manual for detailed descriptions.

Table 4-7 lists each operation code in its most general form
with a specific example, then gives a short explanation with any
special restrictions. In the Form column, "en" symbolizes an
expression. Table 4-6, below, defines the "en" symbols.

Table 4-6. Expression Symbols

Symbol Represents

e3 a 3-bit value in the range 0-7 that
can be one of the predefined registers
A, B, C, D, E, H, L, M, SP, or PSW.

e8 an 8-bit value in the range 0-255.

e16 a 16-bit value in the range 0-65535.

The expressions can be formed from an arbitrary combination of
operands and operators. In some cases, the operands are restricted
to particular values within the allowable range, such as the PUSH
instruction. Table 4-7 notes such cases as they are encountered.

The operation codes summarized in Table 4-7 fall into six
categories. Jump, Call and Return instructions can test the
condition flags set in the CPU and transfer control to another

All Information Presented here is Proprietary to Digital Research

165

MP/M IT Programmer's Guide 4.5 Operation Codes

location. Immediate Operand instructions load single- or double
precision registers or single-precision memory cells with constant
values. These also include instructions that perform immediate
arithmetic or logical operations on the accumulator (register A).

Increment and Decrement instructions are provided for both
single- and double-precision registers. Data Movement instructions
transfer data from memory to the CPU and from the CPU to memory.
Arithmetic Logic Unit instructions perform arithmetic and logical
operations on the single-precision accumulator. Control
instructions enable and disable interrupts, halt program execution,
and perform a no-operation function.

 Table 4-7. ASM Operation Codes

Form Example Explanation

 Jumps, Calls and Returns

JMP e16 JMP Ll Jump unconditionally to label

JNZ e16 JNZ L2 Jump on non zero condition to
Label

JZ e16 JZ 100H Jump on zero condition to label

JNC e16 JNC L1+4 Jump on no carry to label

ic e16 JC L3 Jump on carry to label

JPO e16 JPO $+8 Jump on odd parity to label

JPE e16 JPE L4 Jump on even parity to label

JP e16 JP GAMMA Jump on positive result to label

jmp e16 JM al Jump on minus to label

CALL e16 CALL Sl Call subroutine unconditionally

CNZ e16 CNZ S2 Call subroutine if non zero flag

CZ e16 CZ 100H Call subroutine on zero flag

CNC e16 CNC Sl+4 Call subroutine if no carry set

cc e16 CC S3 Call subroutine if carry set

CPO e16 CPO S+8 Call subroutine if parity odd

CPE e16 CPE S4 Call subroutine if parity even

All Information Presented here is Proprietary to Digital Research

166

MP/M II Programmer's Guide 4.5 Operation Codes

 Table 4-7. (continued)

Form Example Explanation

 Jumps, Calls and Returns

CP e16 CP GAMMA Call subroutine if positive
Result

CM e16 CM bl$c2 Call subroutine if minus flag

RST e3 RST 0 Programmed "restart", equivalent
to CALL 8*e3, except one byte
instruction

RET Return from subroutine

RNZ Return if non zero flag set

RZ Return if zero flag set

RNC Return if no carry

RC Return if carry flag set

RPO Return if parity is odd

RPE Return if parity is even

RP Return if positive result

RM Return if minus flag is set

 Immediate Operand Instructions

MVI e3,e8 MVI B,255 Move immediate data to register
A, B, C, D, E, H, L, or M
(memory)

ADI e8 ADI 1 Add immediate operand to A
without carry

ACI e8 ACI OFFH Add immediate operand to A with
Carry

SUI e8 SUIL + 3 Subtract from A without borrow
(carry)

SBI e8 SBI L AND 11B Subtract from A with borrow
(carry)

ANI e8 ANI $ AND 7FH Logical "and" A with immediate
data

All Information Presented here is Proprietary to Digital Research

167

MP/M II Programmer's Guide 4.5 Operation Codes

 Table 4-7. (continued)

Form Example Explanation

 Immediate Operand Instructions

XRI e8 XRI 1111$0000B "Exclusive or" A with immediate
Data

ORI e8 ORI L AND 1+1 Logical "or" A with immediate
data

CPI e8 CPI 'a' Compare A with immediate data
(same as SUI except register A
not changed)

LXI e3,el6 LXI B,100H Load extended immediate to
register pair (e3 must be
equivalent to B, D, H, or SP)

 Increment and Decrement Instructions

INR e3 INR E Single precision increment
register(e3 produces one of A,
B, C, D, E, H, L, M)

DCR e3 DCR A Single precision decrement
Register (e3 produces one of A,
B, C, D, E, H, L, M)

INX e3 INX SP Double precision increment
register pair (e3 must be
equivalent to B, D, H, or SP)

DCX e3 DCX B Double precision decrement
register pair (e3 must be
equivalent to B, D, H, or SP)

 Data Movement Instructions

MOV e3,e3 MOV A,B Move data to leftmost element
from rightmost element (e3 produces one of
A, B, C, D, E, H,
L, or M). MOV M,M is
Disallowed

LDAX e3 LDAX B Load register A from computed
address (e3 must produce either
B or D)

STAX e3 STAX D Store register A to computed
address (e3 must produce either
B or D)

All Information Presented here is Proprietary to Digital Research

168

MP/M II Programmer's Guide 4.5 Operation Codes

 Table 4-7. (continued)

Form Example Explanation

 Data Movement Instructions

LHLD e16 LHLD Ll Load HL direct from location
e16 (double precision load to
H and L)

SHLD e16 SHLD L5+x Store HL direct to location e16
(double precision store from H
and L to memory)

LDA e16 LDA Gamma Load register A from address e16

STA e16 STA X3-5 Store register A into memory at
e16

POP e3 POP PSW Load register pair from stack,
set SP (e3 must produce one of
B, D, 11, or PSW)

PUSH e3 PUSH B Store register pair into stack,
set SP (e3 must produce one of
B, D, H, or PSW)

IN e8 IN 0 Load register A with data from
port e8

OUT e8 OUT 255 Send data from register A to
port e8

XTHL Exchange data from top of stack
with HL

PCHL Fill program counter with data
from HL

SPHL Fill stack pointer with data
from HL

XCHG Exchange DE pair with HL pair

 Arithmetic Logic Unit Operations

ADD e3 ADD B Add register given by e3 to
accumulator without carry (e3
must produce one of A, B, C, D,
E, H, or L)

ADC e3 ADC L Add register given by e3 to A
with carry, (e3 must produce one
of A, B, C, D, E, H, or L)

All Information Presented here is Proprietary to Digital Research

169

MP/M II Programmer's Guide 4.5 Operation Codes

Table 4-7. (continued)

Form Example Explanation

 Arithmetic Logic Unit Operations

SUB e3 SUB H Subtract register given by e3
from A without carry, (e3 must
produce one of A, B, C, D, E,
H, or L)

SBB e3 SBB 2 Subtract register given by e3
from A with carry, (e3 must
produce one of A, B, C, D, E,
H, or L)

ANA e3 ANA 1+1 Logical "and" of Register given
by e3 with A, (e3 must produce
one of A, B, C, D, E, H, or L)

XRA e3 XRA A "Exclusive or" of register given
by e3 with A, (e3 must produce one
of A, B, C, D, E, H, or L)

ORA e3 ORA B Logical "or" of register given
by e3 with A, (e3 must produce
one of A, B, C, D, E, H, or L)

CMP e3 CMP Compare register given by e3 with
A, (e3 must produce one of A,
B, C, D, E, H, or L)

DAA Decimal adjust register A
based upon last arithmetic
logic unit operation

CMA Complement bits in register A

STC Set carry flag to 1

CMC Complement carry flag

RLC Rotate bits left, (re)set carry
as a side effect (high-order A
bit becomes carry)

RRC Rotate bits right, (re)set
carry as side effect (low
order A bit becomes carry)

RAL Rotate carry/A register to left
(carry is involved in the
rotate)

All Information Presented here is Proprietary to Digital Research

170

MP/M II Programmer's Guide 4.5 Operation Codes

Table 4-7. (continued)

Form
Example Explanation

 Arithmetic Logic Unit Operations

RAR Rotate carry/A register to
right (carry is involved in the
rotate)

DAD e3 DAD B Double precision add register
pair e3 to HL (e3 must produce
B, D, H, or SP)

 Control Instructions

HLT Halt the 8080 processor
DI Disable the interrupt system
EI Enable the interrupt system
NOP No operation

All Information Presented here is Proprietary to Digital Research

171

MP/M II Programmer’s Guide 4.6 Error Messages

4.6 Error Messages

When ASM finds errors within the assembly language program, it
lists them as single-character codes in the leftmost position of the
source listing. The line in error is also echoed at the console so
that the source listing need not be examined to determine if errors
are present. Table 4-8 defines the error codes.

 Table 4-8. Assembly Error Codes

Code Meaning

D Data error: element in data statement cannot be
placed in the specified data area

E Expression error: expression is ill-formed and
cannot be evaluated

L Label error: label cannot appear in this context
may be duplicate label

N Not implemented: features that will appear in
future ASM versions (e.g., Macros) are recognized
and flagged, but are unsupported in this version

0 Overflow: expression is too complicated, has too
many pending operators to be computed; simplify it

P Phase error: label does not have the same value on
two subsequent passes through the program

R Register error: the value specified as a register
is not compatible with the operation code

S Syntax error: the fields of this statement are ill
Formed and cannot be processed properly; may be due
to invalid characters or misplaced delimiters

U Undefined symbol: label operand in this statement
has not appeared elsewhere on the left side of a
statement that generates machine code or reserves
memory space, as in a MOV instruction, a DS pseudo
operation, or an EQU or SET directive

V Value error: operand encountered in expression is
improperly formed

All Information Presented here is Proprietary to Digital Research

172

MP/M II Programmer's Guide 4.6 Error Messages

Several error message can be printed at the terminal if a disk
error condition occurs. Table 4-9 summarizes these error messages.

 Table 4-9. ASM Terminal Messages

Message
Meaning

NO SOURCE FILE PRESENT The file specified in the ASM
command does not exist on disk.

NO DIRECTORY SPACE The disk directory is full;
erase files that are not
needed, then retry.

SOURCE FILE NAME ERROR Improperly formed ASM filename
wildcard ? and * characters
are not allowed.

SOURCE FILE READ ERROR Source file cannot be read
properly by the assembler;
type file at console to determine
the point of error.

OUTPUT FILE WRITE ERROR output files cannot be written
properly; most likely cause is
a full disk; erase and retry.

CANNOT CLOSE FILE Output file cannot be closed;
check to see if disk is write
protected.

All Information Presented here is Proprietary to Digital Research

173

Section 5
RDT

5.1 RDT Overview

The Relocatable Debugging Tool (RDT) allows the user to test
and debug programs in the MP/M II environment. Multiple RDTs can be
relocated for execution in a non-banked system, or assigned absolute
memory locations for execution in a bank-switched system. RDT
commands are a superset of the CP/M debugger, DDT (see the command
summary in Table 5-1.) The additional commands allow RDT to debug
relocatable code and save patched programs. However, there is one
important difference between RDT and DDT. RDT is a PRL file and DDT
is a COM file. Thus RDT can debug both COM and PRL files, while DDT
can only debug COM files. Note: RDT cannot read a file that is
password protected.

5.2 Invoking RDT

Invoke RDT by entering one of the following commands:

RDT
RDT filespec

The first command simply loads and executes RDT. After
displaying its sign-on message and prompt character, RDT is ready to
accept operator commands. The second command is similar to the
first, except that after RDT is loaded, it loads the file specified
by filespec.

The second command is equivalent to first invoking RDT and then
using the I (Input) command to insert a filename into the default
FCB at Base+005CH, as shown in the following sequence.

OA>RDT
00:22:55 A:RDT .PRL (USER n)
[MP/M] DDT VERS 2.0
NEXT PC
0100 0100
-1 filespec
-R

 -

At this point, the program named by filespec is loaded and ready for
debugging.

All Information Presented here is Proprietary to Digital Research

174

MP/M II Programmer's Guide 5.3 RDT Command Conventions

5.3 RDT Command Conventions

When RDT is ready to accept a command, it prompts the user with
a hyphen, -. In response, the user can type a command line or a
CONTROL-C (represented as ^C) to end the debugging session (see
Section 5.4) . A command line can have up to 32 characters, and must
be terminated with a carriage return. While entering commands, use
the standard MP/M II line-editing functions (^X, ^H, etc.) to
correct typing errors. RDT does not process the command line until
a carriage return is entered.

The first character of each command line determines the command
action. Table 5-1 summarizes RDT commands. RDT commands are
defined individually in Section 5.5.

Table 5-1. RDT Command Summary

Command Action

A enter assembly language statements
 *B set or reset bitmap bits

D display memory in hexadecimal and ASCII
F fill memory block with a constant
G begin execution with optional breakpoints
I set up file control block and command tail
L list memory using assembler mnemonics
M move memory block

 *N normalize and relocate program to RDT's memory
segment

R read disk file into memory
S set memory to new values
T trace program execution
U untraced program monitoring

 *V compute parameter value for W command
 *W write contents of memory block to disk

X examine and modify CPU state

 *RDT only

The command character can followed by one or more arguments,
which may be hexadecimal values, filenames or other information,
depending on the command. RDT assumes all values the user enters
are hexadecimal. If the user enters more than four digits, RDT
truncates them on the left; that is, RDT only uses the last four.
Arguments should be separated from each other by commas or spaces.
Note: no spaces are allowed between the command character and the
first argument.

All Information Presented here is Proprietary to Digital Research

175

MP/M II Programmer's Guide 5.4 Terminating RDT

5.4 Terminating RDT

The user terminates RDT by typing a TC in response to the
hyphen prompt. RDT responds with the query:

Abort (Y/N) ?

Note: MP/M II does not have the SAVE facility found in CP/M so if
RDT is used to patch a file, the user must write the file to disk
using the W command before terminating RDT.

5.5 RDT Commands

This section defines RDT commands and their arguments. RDT
commands give the user control of program execution and allow the
user to display and modify system memory and the CPU state.

5.5.1 The A (Assemble) Command

The A command assembles 8080 mnemonics directly into memory.
The form is:

Aa

where a is the hexadecimal address where assembly is to start. RDT
responds to the A command by displaying the address of the memory
location where assembly is to begin. At this point, the user enters
assembly language statements. When a statement is entered, RDT
converts it to machine code, places the value(s) in memory, and
displays the address of the next available memory location. This
process continues until the user enters a blank line or a line
containing only a period.

RDT responds to invalid statements by displaying a question
mark,?, and redisplaying the current assembly address.

5.5.2 The B (Bitmap Bit Set/Reset) Command

The B command enables the user to update the bitmap of a page
relocatable file. The user reads the file in, makes changes to the
code, and then determines the bytes that need relocation (i.e. the
high-order address bytes of jump instructions). The user then
updates the bitmap with the B command. There are two parameters
specified: the address to be modified, followed by a 0 to reset a
byte previously marked for relocation or a 1 to mark a byte for
relocation. The form is:

Ba,n

where a is the hexadecimal address, and n is either a 0 or 1.

All Information Presented here is Proprietary to Digital Research

176

MP/M Ii Programmer's Guide 5.5 RDT Commands

5.5.3 The D (Display) Command

The D command displays the contents of memory as 8-bit
hexadecimal values and in ASCII. The forms are:

D
Ds
Ds,f

where s is the hexadecimal address where the display is to start,
and f is the address where the display is to finish. In response to
the first form shown above, RDT displays memory from the current
display address for 16 display lines. The response to the second
form is similar to the first, except that the display address is
f first set to the address s. The third form displays the memory
block between locations s and f.

Memory is displayed on one or more display lines. Each display
line shows the values of up to 16 memory locations. For the first
three forms, the display line appears as follows:

aaaa bb bb . . . bb cc . . . c

where aaaa is the display address in hexadecimal: bbs represents
the contents of the memory locations in hexadecimal, and cs
represents the contents of memory in ASCII. Any non-displayable
ASCII characters are represented by periods.

During a long display, type any character at the console to
abort the D command.

5.5.4 The F (Fill) Command

The F command fills an area of memory with a byte constant.
The form is:

Fs,f,b

where s is a hexadecimal starting address of the block to be filled,
f is the ending address, and b is the hexadecimal byte constant.
RDT stores the 8-bit value b in locations s through f by first
storing b at address s, then incrementing the value of s and testing
it against f. The process repeats until s exceeds f.

All Information Presented here is Proprietary to Digital Research

177

MP/M II Programmer's Guide 5.5 RDT Commands

5.5.5 The G (Go) Command

The G command transfers control to the program being tested,
and optionally sets one or two breakpoints. The forms are:

G
G,bl
G,bl,b2
Gs
Gs,bl
Gs,bl,b2

where s is a hexadecimal address where program execution is to
start, and bl and b2 are hexadecimal addresses of breakpoints.

In the first three forms, no starting address is specified, so
RDT starts execution of the program under test at the current value
of the program counter. (Use an X command to determine the current
value of the counter). The first form transfers control to the
user’s program without setting any breakpoints. The next two forms
respectively set one and two breakpoints before passing control to
the user's program. The next three forms are analogous to the first
three, except that the user's program counter is first set to s.

Once control is transferred to the program under test, it
executes in real time until a breakpoint is encountered. At this
point, RDT regains control, clears all breakpoints, and indicates
the address at which execution of the program under test was
interrupted as follows:

 *aaaa

where aaaa is the hexadecimal address where the break occurred.
When a breakpoint returns control to RDT, the instruction at the
breakpoint address has not yet been executed.

5.5.6 The I (Input Command Tail) Command

The I command inserts a filename into the default FCB at
Base+005CH, relative to the base of the segment in which RDT is
loaded. The form is:

I<command tail>

where <command tail> is a character string that usually contains one
or more filenames. The first filename is parsed into the default
FCB at Base+005CH. The optional second filename (if specified) is
parsed into the second part of the default FCB beginning at
Base+006CH.

All Information Presented here is Proprietary to Digital Research

178

MP/M II Programmer's Guide 5.5 RDT Commands

5.5.7 The L (List) Command

The L command lists the contents of memory in assembly
language. The forms are:

L
Ls
Ls,f

where s is the hexadecimal address where the list is to start, and f
is the hexadecimal address where the list is to finish.

The first form lists 11 lines of disassembled machine code from
the current list address. The second form sets the list address to
s and then lists 11 lines of code. The last form lists disassembled
code from s through f. In all three cases, the list address is set
to the next unlisted location in preparation for a subsequent L
command. When RDT regains control from a program being tested (see
G, T and U commands) , the list address is set to the current value
of the program counter.

Abort long displays by typing any key during the list process.
Or, enter ^S to halt the display temporarily.

5.5.8 The M (Move) Command

The M command moves a block of data values from one area of
memory to another. The form is:

Ms,f,d

where s is the hexadecimal starting address of the block to be
moved; if is the address of the final byte to be moved, and d is
the destination address of the f first byte to receive the data.
Note: if d is between s and f, part of the block being moved is
overwritten before it is moved, because data is transferred starting
from location s.

5.5.9 The N (Normalize) Command

The N command adjusts the relocatable addresses of the page
relocatable file that RDT reads into memory. The user reads the
file into memory with the R command, and then uses the N command to
prepare the file for execution within the memory segment where RDT
is executing. The form is:

N

All Information Presented here is Proprietary to Digital Research

179

MP/M II Programmer's Guide 5.5 RDT Commands

5.5.10 The R (Read) Command

The R command is used in conjunction with the I command to read
files from disk into the TPA in preparation for debugging. The
forms are:

R
Rb

where b is an optional bias address that is added to each program or
data address as it is loaded. The load operation must not overwrite
any of the system parameters from OOOH through OFFH (i.e., the base
page of the TPA where RDT is loaded) . If b is omitted, RDT assumes
b=OOOOH. The R command requires a previous I command, specifying a
valid filename. The load address for each record from a HEX file is
obtained from each individual HEX record. RDT assumes any file
specified as type COM contains machine code in the Intel hex format.
Other files are assumed to be in pure binary format.

The user can issue any number of R commands following an I
command to re-read the program being debugged, if the program does
not destroy the default FCB at Base+005CH.

Recall that the sequence:

OA>RDT
-Ifilespec
-R
is equivalent to:

OA>RDT filespec

When the user issues the R command, RDT responds with a load
message in the form:

NEXT PC
nnnn pppp

where nnnn is the next address following the loaded program, and
pppp is the assumed program counter taken from the last record if a
HEX file is specified; for other files, it is assumed to be the
base of the TPA.

5.5.11 The S (Set) Command

The S command can examine or alter the contents of an
individual byte in memory. The form is:

Sa

where a is the hexadecimal address to be examined or altered.

All Information Presented here is Proprietary to Digital Research

180

MP/M II Programmer's Guide 5.5 RDT Commands

RDT displays the memory address and its current contents on the
following line in the following form:

aaaa bb

where aaaa is the hexadecimal address, and bb is the byte contents
of memory in hexadecimal. The user can then choose to alter the
memory location or to leave it unchanged. If the user enters a
valid hexadecimal value, RDT replaces the contents of the byte in
memory with the new value. If no value is entered, the contents of
memory are unaffected and the contents of the next address are
displayed. In either case, RDT continues to display successive
memory addresses and values until either a period or an invalid
value is entered.

5.5.12 The T (Trace) Command

The T command traces program execution for 1 to OFFFFH program
steps. The forms are:

T
Tn

where n is the number of instructions to execute before returning
control to the console.

In response to the first form, RDT displays the CPU state and
executes the next program step. The program terminates immediately,
with the termination address displayed in the form:

 *hhhh

where hhhh is the next address to execute. The user sets the
display address (used in the D command) to the value of registers H
and L, and sets the list address (used in the L command) to the
value hhhh. The user can then examine the CPU state at program
termination by using the X command.

The second form is similar to the first, except that RDT traces
program execution for n steps before a breakpoint occurs. The user
can force a breakpoint in the trace mode by typing a rubout
character. RDT again displays the CPU state before each program
step in the same format as described in the X command.

In either case, RDT transfers control to the program under test
at the address indicated by the program counter. If the user does
not specify n, RDT executes only one instruction. The user can
abort a long trace before n steps are executed by typing any
character at the console.

Note: Program tracing stops at the interface to MP/M II, and
resumes after return from MP/M II to the program under test. Thus,
MP/M II functions that access I/O devices such as disk drives, run
in real time and avoid I/O timing problems. Programs running in

All Information Presented here is Proprietary to Digital Research

181

MP/M II Programmer's Guide 5.5 RDT Commands

trace mode execute approximately 500 times slower than real time
since RDT gets control after each instruction is executed.

5.5.13 The U (Untrace) Command

The U command is identical to the T command except that the CPU
state is displayed only before the first instruction is executed,
rather than before every step. The forms are:

U
Un

where n is the number of instructions to execute before returning
control to the console. Abort U command by striking any key at the
console.

5.5.14 The V (Value) Command

The V command facilitates use of the W command by computing the
parameter to follow the "W". A single parameter immediately follows
the "V" which is the NEXT location following the last byte to be
written to disk.

Normally, the user reads in the file, edits it, and then writes
it back to disk. The read command, R, produces -a value for NEXT.
This value can be entered as a parameter following the V command,
and RDT computes and displays the number of sectors to be written
out using the W command. The form is:

V

5.5.15 The W (Write) Command

The W command writes the contents of a contiguous block of
memory to disk. The form is:

Wn

where n is the value of the parameter obtained from the V command,
and is the number of sectors to be written to disk. The user enters
the value for n in hexadecimal.

All Information Presented here is Proprietary to Digital Research

182

MP/M II Programmer's Guide 5.5 RDT Commands

5.5.16 The X (Examine CPU State) Command

The X command allows the user to examine and alter the CPU
state of the program under test. The forms are:

X
Xr
Xf

where r is the name of one of the 8080 CPU registers and f is the
abbreviation of one of the CPU flags. The first form displays the
CPU state in the format:

CfZfMfEfIf A=bb B=dddd D=dddd H=dddd S=dddd P=dddd inst

where f is the flag value, 0 or 1; bb is the byte value, and dddd
is the double byte quantity corresponding to the register pair. The
"inst" field contains the disassembled instruction that occurs at
the location addressed by the CPU state's program counter.

The second form displays and allows the user to alter the
register values, where r is one of the registers listed in Table 5
2.

The third form displays and allows the user to alter the values
of the flags listed in Table 5-2.

Table 5-2. 8080 CPU Flags and Registers

Flag Definition Values

C Carry Flag (0/1)
Z Zero Flag (0/1)
M Minus Flag (0/1)
E Even Parity Flag (0/1)
I Interdigit Carry (0/1)

 Register Definition Values

A Accumulator (0-FF)
B BC register pair (0-FFFF)
D DE register pair (0-FFFF)
H HL register pair (0-FFFF)
S Stack Pointer (0-FFFF)
P Program Counter (0-FFFF)

In each case, RDT first displays the flag or register value,
and then accepts input at the console. If the user enters a value
in the proper range, RDT alters the flag or register. Entering a
carriage return does not alter the value. Note: RDT displays the
BC, DE, and HL registers as register pairs. Thus, typing B alters
the BC register pair; D alters the DE register pair, etc.

All Information Presented here is Proprietary to Digital Research

183

Section 6
Other Programming Utilities

6.1 GENHEX

Syntax:

genhex{d:}filename{.typ}xxx

GENHEX accepts a COM file as input and changes it to a HEX
file. This utility is useful for generating HEX files as input for
the GENMOD utility.

If no filetype is specified, GENHEX assumes a type of COM. In
the syntax line above, xxx is the offset specified for the HEX file.
GENHEX is non-destructive. That is, it does not alter the original
COM file. The following is an example of a GENHEX command:

OA>GENHEX B:PROGRAM.COM 100

6.2 GENMOD

Syntax:

genmod {d:}filename.hex{d:}filename.prl$nnnn

GENMOD produces a PRL file from a HEX file. The user first
concatenates two HEX files generated from the same source file.
The HEX files are offset from each other by 100H bytes. GENMOD
accepts the concatenated file as input, and then prepares a PRL
file by generating a header record, a code and data segment, and a
bit map.

In the syntax line above, nnnn is an optional parameter that
can be used to specify an additional amount of memory required by
the program beyond the code space. The form of parameter is 11$11
followed by four HEX digits. For example, if a program is written
to use all of available memory for buffers, specifying the optional
parameter ensures a minimum buffer allocation. GENMOD is non
destructive. That is, it does not alter the original HEX file. The
following is an example of a GENMOD command:

OA>GENMOD B:PROGRAM.HEX A:PROGRAM.PRL.$1000

All Information Presented here is Proprietary to Digital Research

184

MP/M II Programmer's Guide 6.3 PRLCOM

6.3 PRLCOM

Syntax:

prlcom{d:}filename.prl{d:}filename.com

PRLCOM accepts a source PRL file, and produces a COM file by
removing the header record and the bit map. PRLCOM is non
destructive. That is, it does not alter the original PRL file.
The destination file can be on the same or a different drive, but if
it already exists, PRLCOM queries the user:

Destination File Exists, delete (Y/N)?

Responding with N aborts PRLCOM. The following is an example of a
PRLCOM command:

OA>PRLCOM B:PROGRAM.PRL A:PROGRAM.C

6.4 DUMP

Syntax:

dump {d:}filename.typ

DUMP displays the contents of a disk file in hexadecimal
format. The following is an example of a DUMP command:

OA>DUMP PROGRAM.COM

The filename must be unambiguous (i.e. no wildcard characters)
Note: DUMP does not display the contents of a password protected
file. DUMP displays the file's contents at the console, 16 bytes at
a time, with the absolute byte address listed to the left of each
line as shown in the example below:

0000 CD 8A 02 1F D2 10 02 CD 58 02 32 64 03 CD D3 02 0010
CD 71 02 43 66 D9 01 57 OE 01 2D F5 05 3A 2E 04 0020 FE CA
A2 E5 B3 32 02 E6 45 00 00 00 00 00 00 00 0030 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00
 .
 .
 .

The user can send the output to the printer by typing CONTROL-P
before entering the DUMP command, and start and stop the output at
the console with CONTROL-S/CONTROL-Q. Type any key to abort the
DUMP program.

All Information Presented here is Proprietary to Digital Research

185

MP/M II Programmer's Guide 6.5 LOAD

6.5 LOAD

Syntax:

load {d:}filename{.typ}

LOAD accepts as input a HEX file and produces as output a COM
file, which can then be executed. LOAD is non-destructive. That
is, it does not alter the original HEX file. If no filetype is
specified in the command line, LOAD looks for a file of type HEX on
the disk. The following is an example of a LOAD command:

OA>LOAD B:PROGRAM.HEX

All Information Presented here is Proprietary to Digital Research

186

All Information Presented here is Proprietary to Digital Research

187

Section 7
PRL File Generation

7.1 PRL Format

A Page Relocatable Program is stored on disk as a file of type
.PRL. The format is shown in Table 7-1.

 Table 7-1. PRL File Format

Address Contents

0001-0002H Program size
0004-0005H Minimum buffer requirements (additional

memory)
0006-OOFFH Currently unused, reserved for future

allocation

0100H + Program size = Start of bit map

The bit map is a string of bits identifying those bytes in the
source code that require relocation. There is one byte in the bit
map for every 8 bytes of source code. The most significant bit (bit
7) of the f first byte of the bit map indicates whether or not the
first byte of the source code requires relocation. If the bit is
lion", it indicates that relocation is required. The next bit, (bit
6), of the first byte corresponds to the second byte of the source
code, and so forth.

7.2 Generating a PRL

The preferred technique for the generation of a . PRL file is to
use the Digital Research Link-80 which is capable of generating a
.PRL file from a REL relocatable object file. This technique is
described in detail in the Link-80 Manual. A sample link command is
shown below:

OA>Iink dump[op]

An alternate method of generating a PRL file is to use the
Digital Research assembler, ASM. This technique is described below.

A Page Relocatable Program can be generated by assembling the
source code twice; during the second assembly, 100H is added to
each ORG statement. The two HEX files generated by assembling the

All Information Presented here is Proprietary to Digital Research

188

MP/M II Programmer's Guide 7.2 Generating a PRL

source code twice are concatenated with PIP, and the resulting file
is then provided as input to GENMOD, which produces an output file
of type PRL. The GENMOD utility is described in Section 6.2.

Appendix G contains a sample Page Relocatable Program. The
code in the example program illustrates the required use of ORG
statements to access the BDOS and the default FCB. The following

points should be noted:

O The initial ORG is at OOOOH. This establishes the equate
 for the symbol BASE, the base of the relocatable segment.

O The ORG 100H statement establishes the actual beginning of
 code for the program. During the second assembly, these
 two ORG statements are changed to 100H and 200H,
 respectively.

O The first assembly generates a file that can be changed
 into an executable COM file with the LOAD utility. In
 fact, it is desirable to first debug the program as a COM
 file and then make it a PRL file.

O It is vital to use BASE to offset all memory segment base
 page references. The program cannot make BDOS calls to
 absolute 0005H. In this example, BASE is used to offset
 the BDOS, FCB, and BUFF equates. If a program needs to
 determine the top of its memory segment, the following
 equate and code sequence can be used:

MEMSIZE EQU BASE+6

LHLD MEMSIZE ;HL = TOP OF MEMORY SEGMENT

The following steps show how to generate a Page
Relocatable File for this example using the Digital
Research Assembler, ASM:

1. Prepare the program, DUMP.ASM in the example, with proper
 ORG statements as described above.

2. Assuming a system disk is on drive A and the DUMP.ASM
 file is on drive B, enter the commands:

1A>ASM B:DUMP
;assemble the DUMP.ASM file

1A>ERA B:DUMP.HXO
1A>REN B:DUMP.HX0=B:DUMP.HEX
1A>PIP LST:=B:DUMP.PRN[T8]
1A>ERA B:DUMP.PRN

All Information Presented here is Proprietary to Digital Research

189

MP/M II Programmer's Guide 7.2 Generating a PRL

3. Edit the DUMP.ASM file, adding 100H to each ORG
 statement. This can be done by concatenating a preamble
 to the program that contains the two initial ORG
 statements. A submit file to perform this function,
 named ASMPRL.SUB is provided on the distribution
 diskette.

1A>ASM B:DUf4P.BBZ
;assemble the DUMP.ASM file a second time

1A>PIP B:DUMP.HEX=B:DUMP.HXO,B:DUMP.HEX
;concatenate the HEX files

1A>GENMOD B:DUMP.HEX B:DUMP.PRL
;generate the relocatable DUMP.PRL file

All Information Presented here is Proprietary to Digital Research

190

All Information Presented here is Proprietary to Digital Research

191

Section 8
RSP Generation

8.1 RSPs and Resident System Procedures

Resident System Processes are included with MP/M II during
system generation. GENSYS searches the directory for all files with
the type RSP, displays the filenames, and then prompts the user as
to whether it should be included in the generated system file,
MPM.SYS.

MP/M II also supports a special type of RSP called the Resident
System Procedure. A Resident System Procedure provides a method of
serially utilizing a block of code as a system resource. A Resident
System Procedure is created by an RSP. The RSP creates a queue with
the name of the Resident System Procedure and sends it a single two
byte message containing the address of the procedure to be accessed
serially. The RSP then terminates itself.

8.2 Generating an RSP

The method of generating an' RSP is analogous to that of
generating a Page Relocatable Program (as described in Section 7)
with the following exceptions:

O If LINK-80 is used, the output file type of RSP is
 specified with the [or] option.

O The GENMOD output file is designated RSP rather than PRL

O The code in the RSP is ORGed at OOOH rather than 100H.

8.3 RSP Code

Appendix F contains a sample Resident System Process. The code
in the example program illustrates the required structure of an RSP
as well as the BDOS/XDOS access mechanism. This example should be
studied carefully and the following points noted:

o The first two bytes of an RSP are set to the address of the
 BDOS/XDOS entry point. The address is filled in by the
 loader; an RSP can simply access the BDOS/XDOS by loading
 HL from the base of the program area and then executing a
 PCHL instruction.

O The Process Descriptor for the RSP must immediately follow
 the first two bytes that contain the address of the
 BDOS/XDOS entry point. It is important to note the manner
 in which the Process Descriptor is initialized. DS

All Information Presented here is Proprietary to Digital Research

192

MP/M II Programmer's Guide 8.3 RSP Code

instructions are used where storage is simply allocated,
while DB and DW instructions are used where data in the
Process Descriptor must be initialized. Note: the stack
pointer field of the Process Descriptor points to the
address immediately following the stack allocation. This
is the return address and is the actual process entry
point.

O The HEX file generated by assembling the RSP must span the
 entire program and data area. To ensure this, use a DW
 instruction to define the first two bytes of the RSP that
 contain the address of the BDOS/XDOS entry point. Using a
 DS instruction does not generate any HEX file code for
 those two bytes. The end of the program and data area must
 be defined in a similar manner. If the RSP has DS
 instructions preceding the END statement, it is necessary
 to place a DB statement after the DS statements and before
 the END statement.

8.4 Banked RSPs

MP/M II supports a form of an RSP called a banked RSP which
consists of two parts: a resident portion and a banked portion.
The resident portion has the Process Descriptor for the RSP, and any
other data structures such as queues, which must be in common
memory. The banked portion of filetype BRS contains the remainder
of the RSP, usually including the actual code, stack and other data
structures. The resident portion of a banked RSP must follow the
rules given in the previous section for RSPs. The presence of a
banked portion of an RSP is specified by setting the Process
Descriptor memory segment index to zero rather than FFH. The name
provided in the Process Descriptor is used to obt6in the banked
portion of the RSP that has a file type of BRS. The following
points should be noted about a BRS:

o Bytes 0000-0001H of the banked RSP are reserved for the
 address of the resident portion of the RSP. Thus, a banked
 RSP must access the BDOS/XDOS functions by indirectly
 loading from the two bytes at relative 0000-0001H which
 point to the base of the resident portion of the RSP which
 in turn contain the BDOS/XDOS entry point address.

O Bytes 0002-0003H of the banked RSP must contain the initial
 stack pointer value for the process. Thus the stack for
 the banked RSP is in the banked portion of the RSP and
 should be initialized such that the return address on top
 of the stack is the banked RSP entry point address.

O Bytes 0004-OOOBH of the banked RSP must contain an ASCII
 name for the process. This is used for display purposes
 during GENSYS and MPMLDR execution.

All Information Presented here is Proprietary to Digital Research

193

Section 9
SPR Generation

9.1 System Page Relocatable Files

System Page Relocatable Files are placed in the MPM.SYS file
during system generation. A number of SPR files are provided as
part of the standard MP/M II: the resident and banked portions of
the BDOS, named RESBDOS.SPR and BNKBDOS.SPR; the resident and
banked portions of the XDOS, named XDOS.SPR and BNKXDOS.SPR; and
the banked TMP, named TMP.SPR.

Another SPR file named the RESXIOS.SPR or BNKXIOS.SPR contains
a user customized XIOS that is unique to the hardware on which MP/M
II is executing. This section gives an overview of the generation
technique for this custom SPR. A detailed discussion of the
generation of RESXIOS.SPR or BNKXIOS.SPR is provided in Section 1.3
of the MP/M II System Guide.

9.2 Generating an SPR

The method of generating an SPR is analogous to that of
generating a Page Relocatable Program (as described in Section 7)
with the following exceptions:

o if LINK-80 is used, the output file of type SPR is
 specified with the [os] option.

O the GENMOD output file is designated SPR rather than PRL.

O the code in the SPR is ORGed at OOOH rather than 100H.

All Information Presented here is Proprietary to Digital Research

194

All Information Presented here is Proprietary to Digital Research

195

Appendix A
Flag Assignments

+-------+
: 0 : Reserved
+-------+
: 1 : System time unit tick
+-------+
: 2 : One second interval
+-------+
: 3 : One minute interval
+-------+
: 4 : Undefined
: :
: . : .
: :
: . : .
: :
: . : .
+-------+
: 31 :
+-------+

Figure A-1. Flag Assignments

All Information Presented here is Proprietary to Digital Research

196

All Information Presented here is Proprietary to Digital Research

197

Appendix B
Process Priority Assignments

0 - 31

32 - 63

64 - 197

 198

 199

 200

201 - 254

 255

Interrupt handlers

System processes

Undefined

Terminal Message Processes

Command Line Interpreter

Default user priority

User processes

Idle process

All Information Presented here is Proprietary to Digital Research

198

All Information Presented here is Proprietary to Digital Research

199

Appendix C
BDOS Function Summary

 Table C-1. BDOS Function Summary

Number Function Name Input Parameters Returned values

0 System Reset none none
1 Console Input none A = char
2 Console Output E = char none
3 Raw Console Input none A = char
4 Raw Console Output E = char none
5 List Output E = ch6r none
6 Direct Console I/O see def see def
7 Get I/O Byte Not supported under MP/M II
8 Set I/O Byte Not supported under MP/M II
9 Print String DE = .Buffer none
10 Read Console Buffer DE = .Buffer see def
11 Get Console Status none A = 00/01
12 Return Version Number none HL= Version#
13 Reset Disk System none see def
14 Select Disk E = Disk Number see def
15 open File DE = .FCB A = Dir Code
11 Close File DE = .FCB A = Dir Code
17 Search for First DE = .FCB A = Dir Code
18 Search for Next none A = Dir Code
19 Delete File DE = .FCB A = Dir Code
20 Read Sequential DE = .FCB A = Err Code
21 Write Sequential DE = .FCB A = Err Code
22 Make File DE = .FCB A = Dir Code
213 Rename File DE = .FCB A = Dir Code
24 Return Login Vector none HL= Login Vect*
25 Return Current Disk none A = Cur Disk#
26 Set DMA Address DE = .DMA none
27 Get Addr(Alloc) none HL= Alloc
28 Wtite Protect Disk none see def
29 Get R/O Vector none HL= R/O Vect*
30 Set File Attributes DE = .FCB see def
3l Get Addr(disk parms) none HL= DPB
32 Set/Get User Code see def see def
33 Read Random DE = .FCB A = Err Code
34 Write Random DE = .FCB A = Err Code
35 Compute File Size DE = .FCB ro, rl, r2
36 Set Random Record DE = .FCB rO, 11, L2
37 Reset Drive DE = drive Vect A = Err Code
38 Access Drive DE = drive Vect none
19 Free Drive DE = drive Vect none
40 Random w 0-fiil DE = .FCB A = Err Code
41 Test and Write Record DE = .FCB HL = Err Code
42 Lock Rtcord DE = .FCB HL = Err Code
 (Current DMA Addr -> File ID)

All Information Presented here is Proprietary to Digital Research

200

MP/M II Programmer's Guide Appendix C BDOS Function Summary

 Table C-1. (continued)

Number Function Name Input Parameters Returned values

43 Unlock Record DE = .FCB HL = Err Code
(Current DMA ADDR -> File ID)

44 Set Multi-Sector Count E = #of Sectors A = Rtn Code
45 Set BDOS Error Mode see def none
46 Get Disk FrLe Spece E = Disk # see def
47 Chain To Program see def none
48 Flush Buffers none see def
100 Set Directory Label DE = .FCB HL = Dir Code
101 Return Directory Label E = Disk # A = Label Data
102 Read File XFCB DE = .XFCB HL = Dir Code
103 Write File XFCB DE = .XFCB HL = Dir Code
104 Set Date and Time DE = .TOD none
105 Get Date and Time DE = .TOD none
106 Set Default Password DE = .Password none
107 Return Serial Number DE = .serialnmb serialnmb set

The following abbreviations are used in the table.

char = ASCII character
Dir = Directory
Err = Error
Vect = Vector

Note: DE refers to register pair DE; HL refers to register pair
HL, and that A = L, and B = H upon return.

All Information Presented here is Proprietary to Digital Research

201

Appendix D
XDOS Function Summary

 Table D-1. XDOS Function Summary

Number Function Name Input Parameters Returned values

128 Absolute Memory Rqst DE = .MD A = Err Code
129 Relocatable Mem Rqst DE = .MD A = Err Code
130 Memory Free DE = .MD none
131 Poll E = Device none
132 Flag Wait E = Flag A = Err Code
133 Flag Set E = Flag A = Err Code
134 Make Queue DE= .QCB none
135 Open Queue DE= .UQCB A = Err Code
136 Delete Queue DE = .QCB A = Err Code
137 Read Queue DE = .UQCB none
138 Conditional Read Queue DE = .UQCB A = Err Code
139 Write Queue DE = .UQCB none
140 Conditional Write Queue DE = .UQCB A = Err Code
141 Delay DE = #ticks none
142 Dispatch none none
143 Terminate Process E = Term. Code none
144 Create Process DE = .PD none
145 Set Priority E = Priority none
146 Attach Console none none
147 Detach Console none none
148 Set Console E = Console none
149 Assign Console DE = .APB A= Err Code
150 Send CLI Command DE = .CLICMD none
151 Call Resident Sys Proc DE = .CPB HL= result
152 Parse Filename DE = .PFCB see def
153 Get Console Number none A= console #
154 System DE~ta Address none HL = Sys Data Addr
155 Get Date and Time DE = .TOD none
156 Return PD Addr none HL = PD Addr
157 Abort Spec. Process DE = .ABTPB A = Err Code
158 Attach List none none
159 Detach List none none
160 Set List E = List # none
161 Cond. Attach List none A = Err Code
162 Cond. Attach Console none A = Err Code
163 NIPM Version Number none HL = Version#
164 Get List Number none A = list #

The following abbreviations are used in the table.

Addr = Address
Cond. = Conditional
Proc = Process
Rqst = Request
Spec. = Specified
term. = Terminate

All Information Presented here is Proprietary to Digital Research

202

All Information Presented here is Proprietary to Digital Research

203

Appendix E
Sample Page Relocatable Program

**
* Note: *
* This program listing has been *
* included only as a sample and may not *
* reflect changes required by later MP/M *
* releases. For this reason the reader *
* should assemble and list the program *
* as provided on the distribution disk. *
**

page 0
0000 org 0000h
0000 base equ $
0100 org 0100h

;note: either baseOlOO.asm or base02OO.asm must be ap
;to the beginning of this file before assembling.

; title 'file dump program'
; file dump program, reads an input file and
; prints in hex

;copyright (c) 1975, 1976, 1977,.1978, 1979, 19
;digital research
;box 579, pacific grove
;california, 93950

0005 = bdos equ base+5 ;dos entry point
0001 = cons equ 1 ;read console
0002 = typef equ 2 ;type function
0009 = printf equ 9 ;buffer print entry
000b = brkf equ 11 ;break key function
000f = openf equ 15 ;file open
0014 = readf equ 20 ;read function

005c = fcb equ base+5ch ;file control block address
0080 = buff equ base+80h ;input disk buffer address

;non graphic characters
000d = cr equ Odh ;carriage return
000a = lf equ Oah ;line feed

;file control block definitions
005c = fcbdn equ fcb+O ;disk name
005d = fcbfn equ fcb+l ;pfile name
0065 = fcbft equ fcb+9 ;disk file type (3 characters)
0068 = fcbrl equ fcb+12 ;file's current reel number
006b = fcbrc equ fcb+15 ;file's record count (0 to 128
007c = fcbcr equ fcb+32 ;current (next) record number

All Information Presented here is Proprietary to Digital Research

204

MP/M II Programmer's Guide Appendix E Sample PRL

007d = fcbln equ fcb+33 ;fcb length
; set up stack

0100 210000 lxi h,O
0103 39 dad sp

; entry stack pointer in hl from the ccp
0104 22lfO2 shld oldsp

; set sp to local stack area (restored at finis)
0107 316102 lxi sp,stktop

; read and print successive buffers
010a cdc601 call setup ;set up input file
OlOd feff cpi 255 ;255 if file not present
010f c2lbOl jnz openok ;skip if open is ok

; file not there, give error message and return
0112 llfdOl lxi d,opnmsg
0115 cdalOl call err
0118 c35601 jmp finis ;to return

openok: ;open operation ok, set buffer index to end
Ollb 3e8O mvi a,80h
Olld 32ldO2 sta ibp ;set buffer pointer to 80h

; hl contains next address to print
0120 210000 lxi h,O ;start with 0000

gloop:
0123 e5 push h ;save line position
0124 cda701 call gnb
0127 el POP h ;recall line position
0128 da5601 jc finis ;carry set by gnb if end file
012b 47 mov b,a

; print hex values
; check for line fold

012c 7d mov a,l
012d e60f ani Ofh ;check low 4 bits
012f c24401 jnz nonum

; print line number
0132 cd7701 call crlf

; check for break key
0135 cd5eOl call break

; accum lsb = 1 if character ready
0138 Of rrc ;into carry
0139 da5lOl jc purge ;don't print any more
013c 7c mov a,h
013d cd9401 call phex
0140 7d mov a,l
0141 cd9401 call phex

nonum:
0144 23 inx h ;to next line number
0145 3e2O mvi a,’ ‘
0147 cd6aOl call pchar
014a 78 mov a,b
014b cd9401 call phex

All Information Presented here is Proprietary to Digital Research

205

MP/M II Programmer's Guide Appendix E Sample PRL

014e c32301 jmp gloop

purge:
0151 OeOl mvi c,cons
0153 cd05OO call bdos
finis:

; end of dump, return to cap
; (note that a jmp to 0000h reboots)

0156 cd7701 call crlf
0159 2alfO2 lhld oldsp
015C f9 sphl

; stack pointer contains cap's stack location
015d c9 ret ;to the ccp

suDroutines

break: ;check break key (actually any key will do)
015e e5d5c5 push h! push d! push b; environment saved
0161 OeOb mvi c,brkf
0163 cd05OO call bdos
0166 cldlel pop b! pop d! pop h; environment restored
0169 c9 ret

pchar: ;print a character
016a e5d5cS push h! push d! push b; saved
016d OeO2 mvi c,typef
016f 5f mov e,a
0170 cd05OO call bdos
0173 cldlel pop b! pop d! pop h; restored
0176 c9 ret

crlf:
0177 3eOd mvi a,cr
0179 cd6aOl call pchar
017c 3eOa mvi a,lf
017e cd6aOl call pchar
0181 c9 ret

pnib: ;print nibble in reg a
0182 e60f ani Ofh ;low 4 bits
0184 fe0a cpi 10
0186 d28eOl jnc plo

; less than or equal to 9
0189 c630 adi ‘0’
018b c39001 jmp prn

; greater or equal to 10
018e c637 pl0: adi ‘a’ - 10
0190 cd6aOl prn: call pchar
0193 c9 ret

All Information Presented here is Proprietary to Digital Research

206

MP/M II Programmer's Guide Appendix E Sample PRL

phex: ;print hex char in reg a
0194 f5 push psw
0195 Of rrc
0196 Of rrc
0197 Of rrc
0198 Of rrc
0199 cd8201 call pnib ;print nibble
019C fl POP psw
019d cd8201 call pnib
OlaO c9 ret

Err: ;print error message
; d,e addresses message ending with

Olal OeO9 mvi c,printf ;print buffer function
Ola3 cd05OO call bdos
Ola6 c9 ret

gnb: ;get next byte
Ola7 3aldO2 lda ibp
Olaa fe8O cpi 80h
Olac c2b801 jnz go

;read another buffer
Olaf cdd30l call diskr
Olb2 b7 ora a ;zero value if read ok
Olb3 cab.801 jz go ;for another byte

; end of data, return with carry set for eof
Olb6 37 stc
Olb7 c9 ret

go: ;read the byte at buff+reg a
Olb8 5f mov e,a ;ls byte of buffer index
Olb9 1600 mvi d,O ;double precision index to de
Olbb 3c inr a ; i nd ex= i nd ex+l
Olbc 32ldO2 sta ibp ;back to memory

; pointer is incremented
; save the current file address

Olbf 218000 lxi h,buff
O.lc2 19 dad d

; absolute character address is in hl
Olc3 7e mov a,m

; byte is in the accumulator
Olc4 b7 ora a ;reset carry bit
Olc5 c9 ret

setup: ;set up file
; open the file for input

Olc6 af xra a ;zero to accum
Olc7 327cOO sta fcbcr ;clear current record
Olca 115cOO Ixi d,fcb
Olcd OeOf mvi c,openf
Olcf cd05OO call bdos

; 255 in accum if open error

All Information Presented here is Proprietary to Digital Research

207

MP/M II Programmer's Guide Appendix E Sample PRL

Old2 c9 ret

diskr: ;read disk file record
Old3 e5d5c5 push hl push d! push b
Old6 115cOO lxi d,fcb
Old9 Oe14 mvi c,readf
Oldb cd05OO call bdos
Olde cldlel pop b! pop d! pop h
Olel c9 ret

; fixed message area
signon:

Ole2 46696c6520 db 'file dump mp/m version 1.0$’
opnmsg:

Olfd OdOa4e6f2O db cr,lf,'no input file present on disk$'

; variable area
021d ibp: ds 2 ;input buffer pointer
021f oldsp: ds 2 ;entry sp value from ccp

; stack area
0221 ds 64 reserve 32 level stack

stktop:
0261 end

All Information Presented here is Proprietary to Digital Research

208

This page was intentionally left blank

All Information Presented here is Proprietary to Digital Research

209

Appendix F
Sample Resident System Process

 * Note: *
 * This program listing has been *
 * included only as a sample and may not *
 * reflect changes required by later MP/M *
 * releases. For this reason the reader *
 * should assemble and list the program *
 * as provided on the distribution disk. *

page 0

title 'type file on console'
;file type program, reads an input file and pri
;it on the console

;copyright (c) 1979, 1980
;digital research
;p.o. box 579
;pacific grove, ca 93950

0000 org 0000h ;standard rsp start

001a = ctlz equ lah ; control-z used for e
0002 = conout equ 2 ; bdos conout function
0009 = printf equ 9 ; print buffer
0014 = readf equ 20 ; read next record
000f = openf equ 15 ; open fcb
0098 = parsefn equ 152 ; parse file name
0086 = mkque equ 134 ; make queue
0089 = rdque equ 137 ; read queue
0091 = stprior equ 145 ; set priority
0093 = detach equ 147 ; detach console

; bdos entry point address
bdosadr:

0000 0000 dw $-$ ldr will fill this i

; type process descriptor

typepd:
0002 0000 dw 0 ;link
0004 00 db 0 ;status
0005 Oa db 10 ;priority (initial)
0006 1001 dw stack+38 ;stack pointer
0008 5459504520 db 'type ‘ ;name in upper case
pdconsole:

All Information Presented here is Proprietary to Digital Research

210

MP/M II Programmer's Guide Appendix F Sample RSP

0010 ds 1 ;console
0011 ff db Offh ;memseg
0012 ds 2 ;b
0014 ds 2 ;thread
0016 3601 dw buff ;disk set dma address
0018 ds 1 ;user code & disk sel
0019 ds 2 ;dcnt
001b ds 1 ;searchl
001C ds 2 ;searcha
00le ds 2 ;active drives
0020 ds 20 ;register save area
0034 ds 2 ;scratch

; type linked queue control block

typelqcb:
0036 0000 dw 0 ;link
0038 5459504520 db 'type ‘ ;name in upper case
0040 4800 dw 72 ;msglen
0042 0100 dw I ;nmbmsgs
0044 ds 2 ;dqph
0046 ds 2 ;nqph
0048 ds 2 ;mh
004a ds 2 ;mt
004c ds 2 ;bh
004e ds 74 ;buf(72 + 2 byte lin

; type user queue control block

typeuserqcb:
0098 3600 dw typelqcb ; pointer
009a 9cOO dw field ; msgadr

;field for message read from type linked qcb

field:
009C ds 1 ;disk select

console:
009d ds 1 ;console

filename:
009e ds 72 ;message body

; parse file name control block

pcb:
OOe6 9eOO dw ;filename file name
address
OOe8 1201 dw fcb ;file control block a
;type stack & other local data structures

stack:

All Information Presented here is Proprietary to Digital Research

211

MP/M II Programmer's Guide Appendix F Sample RSP

00ea ds 38 ;20 level stack
0110 ba0: dw type ;process entry point
0112 fcb: ds 36 ;file control block
0136 buff: ds 128 ;file buffer

;bdos call prdeedure

bdos:
Olb6 2aOOOO lhld bdosadr ;hl = bdos address
Olb9 e9 pchl

;type main program

type:
Olba Oe86 mvi c,mkque
Olbc 113600 lxi d,typelqcb
Olbf cdb60l call bdos ; make typelqcb
Olc2 Oe9l mvi c,stprior
Olc4 llc800 lxi d,200
Olc7 cdb601 call bdos ; set priority to 200

forever:
Olca Oe89 mvi c,rdque
Olcc 119800 lxi d,typeuserqcb
Olcf cdb60l call bdos ; read from type queue
Old2 0698 mvi c,parsefn
Old4 lle600 lxi d,pcb
Old7 cdb601 call bdos ; parse the file name
Olda 23 inx h
Oldb 7c mov a,h
Oldc b5 ora 1 ; test for Offffh
Oldd calf02 jz error
OleO 3a9dOO Ida console
Ole3 321000 sta pdconsole ; typepd.console = con
Ole6 OeOf mvi c,openf
Ole8 111201 Ixi d,fcb
Oleb cdb601 call bdos ; open file
Olee 3c inr a ;test return code
Olef calf02 jz error ;if it was Offh, no f
Olf2 af xra a ;else,
Olf3 323201 sta fcb+32 ;set next record to

new$sector:
Olf6 Oe14 mvi c,readf
Olf8 111201 lXi d,fcb
Olfb cdb60l call bdos ;read next record
Olfe b7 ora a
Olff c22702 jnz done ;exit if eof or error
0202 213601 Ixi h,buff ;point to data sector

MP/M II Programmer's Guide Appendix F Sample RSP

0205 Oe8O mvi c,128 ;get byte count
next$byte:

0207 7e mov a,m ;get the byte
0208 5f mov e,a ;save in e
0209 fela cpi ctlz
020b ca2702 jz ;done exit if eof

All Information Presented here is Proprietary to Digital Research

212

020e c5 push b ;save byte counter
020f e5 push h ;save address registe
0210 OeO2 mvi c,conout
0212 cdb60l call bdos ;write console
0215 el POP h ;restore pointer
0216 cl POP b ;and counter
0217 23 inx h ;bump pointer
0218 Od dcr c ;dcr byte counter
0219 c207O2 jnz next$byte ; more in this sector
021c c3f601 jmp new$sector ;else, we need a new

error:
021f 112fO2 lxi d,err$msg ;point to error messa
0222 OeO9 mvi c,printf ; get function code to
0224 cdb60l call bdos

done:
0227 Oe93 mvi c,detach
0229 cdb60l call bdos ;detach the console
022c c3ca0l jmp forever

err$msg:
022f OdOa46696c db Odh,Oah,'file not found or bad file na

0251 end

All Information Presented here is Proprietary to Digital Research

213

Appendix G
Acronyms and Conventions

Throughout this manual, the following conventions are used in
describing the physical modules of MP/M II, its functional parts,
and data structures:

I PHYSICAL MODULES

BDOS - Basic Disk Operating System
XDOS - Extended Disk Operating System
XIOS - Extended I/O System

II FUNCTIONAL PARTS

CLI - Command Line Interpreter
TMP - Terminal Message Processor

III DATA STRUCTURES

FCB - File Control Block
MD - Memory Descriptor
PD - Process Descripotr
QCB - Queue Control Block
UQCB - User Queue Control Block
XFCB - Extended File Control Block

IV NAMING CONVENTIONS

Filenames:

PRL - Page Relocatable File
SPR - System Page Relocatable
RSP - Resident System Process (or Procedure)
BRS - Banked RSP

System entry point - First letter(s) are capitals and function
 numbers are in parentheses

All Information Presented here is Proprietary to Digital Research

214

All Information Presented here is Proprietary to Digital Research

215

Appendix H
Glossary

BCD: See binary coded decimal.

binary coded decimal: Representation of decimal numbers using
binary digits. See Appendix I for binary representations of ASCII
codes.

block: Basic unit of disk space allocation under MP/M II. Each
disk drive has a fixed block size defined in its Disk Parameter
Block in the XIOS. The block size can be lK, 2K, 4K, 8K or 16K
consecutive bytes. Blocks are numbered relative to zero so that
each block in a file is unique and has a byte displacement of the
Block Number times the Block Size.

boolean: Variable that can only have two values; usually
interpreted as true/false, or on/off.

Checksum Vector: Contiguous data area in the XIOS with one byte for
each directory sector to be checked. A Checksum Vector is
initialized and maintained for each logged-in drive. Each directory
access by the system results in a checksum calculation which is
compared with that in the Checksum Vector. If there is a
discrepancy, the drive is set to read-only status. This prevents
the user from inadvertently switching disks without logging-in the
new disk. If not logged-in, the new disk is treated the same as the
old one and data on it may be destroyed by writing to it.

COM: Filetype for MP/M II command files. These are machine
language object modules ready to be loaded and executed. Any file
with this type may be executed by simply typing the filename after
the drive prompt (e.g.OA>) . For example, the program PIP.COM can be
executed by simply typing PIP.

command: Set of instructions that are executed when the command
name is typed after the system prompt. These instructions can be
"built-in" to the MP/M II system or can reside on disk as a file of
type COM, or PRL. In general, MP/M II commands consist of three
parts: the command name, the command tail, and a carriage return
CSV: See checksum vector.

default buffer: 128-byte buffer maintained at 0080H in Page Zero.
When the CLI loads a COM file,the CLI initializes this buffer to the
command tail, i.e. any characters typed after the COM filename. The
first byte at 0080H contains the length of the command tail while
the command tail itself begins at 0081H. A binary zero terminates
the command tail. The I command under DDT initializes this buffer
in the same way as the CLI does.

All Information Presented here is Proprietary to Digital Research

216

MP/M II Programmer's Guide Appendix H Glossary

default FCB: One of two FCBs maintained at 005CH and 006CH
respectively, in Page Zero. The CLI initializes the first default
FCB from the first delimited field in the command tail and
initializes the second default FCB from the next field in the
command tail.

delimiters: ASCII characters that separate constituent parts of a
file specification. The CLI recognizes certain delimiter characters
as :.=;<> , blank and carriage return. Several MP/M II commands
also treat []()$ as delimiter characters. It is advisable to
avoid the use of delimiter characters and lower-case characters in
filenames.

directory: Portion of a disk containing entries for each file on
the disk and locations of the blocks allocated to the files. Each
file directory element is in the form of a 32-byte FCB, although one
file can have several elements depending on its size. The maximum
number of directory elements supported is specified in the drive's
Disk Parameter Block.

directory element: 32-byte element associated with each disk file.
A file can have more than one directory element associated with it.
There are four directory elements per directory sector. Directory
elements can also be refereed to as directory FCBs.

directory entry: File entry displayed when using the DIR command.
This term also refers to a physical directory element (FCB).

Disk Parameter Block: Table residing in the XIOS that defines the
characteristics of a drive in the disk subsystem used with MP/M II.
The address of the DPB is in the Disk Parameter Header at DPbase +
OAH. Drives with the same characteristics can use the same Disk
Parameter Header, and thus the same DPB. However, drives with
different characteristics must each have their own Disk Parameter
Header and DPB. The address of the drive's Disk Parameter Header
must be returned in registers HL when the BDOS calls the SELDSK
entry point in the BIOS. BDOS Function 31 returns the DPB address.

Disk Parameter Header: 16-byte area in the XIOS that contains
information about the disk drive and a scratchpad area for certain
BDOS operations. Given n disk drives, the Disk Parameter Headers
are arranged in a table with the first row of 16 bytes corresponding
to drive 0, and the last row corresponding to drive n-l.

DPB: See Disk Parameter Block.

DPH: See Disk Parameter Header.
EX: See extent.

extent: 16K consecutive bytes in a file. Extents are numbered from
0 to 31. One extent can contain 1, 2, 4, 8 or 16 blocks. EX is the
extent number field of an FCB and is a one byte field at FCB + 12,
where FCB labels the first byte in the FCB. Depending on the Block
Size and the maximum data Block Number, an FCB can contain 1, 2, 4,

All Information Presented here is Proprietary to Digital Research

217

MP/M II Programmer's Guide Appendix H Glossary

8 or 16 extents. The EX field is normally set to 0 by the user but
contains the current extent number during file I/O. The term 'FCB
Folding' describes FCBs containing more than one extent. In CP/M
version 1.4, each FCB contains only one extent. Users attempting to
perform Random Record I/O and maintain CP/M 1.4 compatibility should
be aware of the implications of this difference.

FCB: See File Control Block.

file: Collection of data containing from zero to 242,144 records.
Each record contains 128 bytes and can contain either binary or
ASCII data. ASCII data files consist of lines of data delineated by
carriage return line feed sequences, meaning that one 128-byte
record might contain one or more lines of text. Files consist of
one or more extents, with 128 records per extent. Each file has one
or more directory elements yet shows as only one directory entry
when using the DIR command.

File Control Block: Thirty-six consecutive bytes designated by the
user for file I/O functions. The FCB fields are explained in
Section 2.2.3. The term FCB also refers to a directory element in
the directory portion of the allocated disk space. These contain
the same first 32 bytes of the FCB explained in Section 2.1 lacking
only the Current Record and Random Record Number bytes.

HEX file format: Absolute output of ASM and MAC for the Intel 8080.
A HEX file contains a sequence of absolute records which gives a
load address and byte values to be stored starting at the load
address. (see Section 4).

I/0: See Input/Output.

Input/Output: Operations or routines that handle the input and
output of data in the computer system.

logical drive: Logically distinct region of a physical drive. A
physical drive can be divided into one or more logical drives, and
designated with specific drive references (i.e., d:a or d:f , etc.) .
Thus at the user interface, it appears that there are several disks
in the system.

Page Zero: Memory region between OOOOH and 0100H that holds
critical system parameters and functions primarily as an interface
region between user programs and the BDOS module.

parse: Separate a command line into its constituent parts.

physical drive: Peripheral hardware device used for mass storage of
data within the computer system.

read-only: Condition in which a drive can be read but not written
to. A drive can be set to read-only status by using the SET or STAT
utilities or the SET File Attributes function (BDOS Function 30) . A
drive can also be set to read-only status if the checksum computed
on a directory access does not match that stored in CSV when the

All Information Presented here is Proprietary to Digital Research

218

MP/m II Programmer's Guide Appendix H Glossary

drive is logged-in. This protects the user from switching disks
without executing a disk reset.

record: Smallest unit of data in a disk file that can be read or
written. A record consists of 128 consecutive bytes whose byte
displacement in a file is the product of the Record Number times
128. A 128-byte record in a file occupies one 128-byte sector on
the disk. If the blocking and deblocking algorithm is used, several
records can occupy each disk sector.

reentrant code: Code that one process can use while another is
already executing it. The data for reentrant code is typically kept
on the stack.

R/O: See read-only.

sector: Basic unit of data read and written on the disk by the
XIOS. A sector can be one 128-byte record in a file or a sector of
the directory. In some disk subsystems, the disk sector size is
larger than 128 bytes, usually a power of two such as 256, 512, 1024
or 2048 bytes. These disk sectors are referred to as Host Sectors.
When the Host Sector size is larger than 128 bytes, Host Sectors
must be buffered in memory, and the 128-byte sectors must be blocked
and deblocked from them.

spooling: Printing a file from disk. The SPOOL program, which is
detached from a console, can print a file from a disk. This leaves
your console free for other tasks while your file is being printed.

stack: Reserved area of memory where the processor saves the return
address when it receives a Call instruction. When the processor
encounters a Return instruction, it restores the current address on
the stack to the Program Counter. Data such as the contents of the
registers can also be saved on the stack. The Push instruction
places data on the stack and the Pop instruction removes it. 8080
stacks are 16 bits wide; instructions operating on the stack add
and remove stack items one word at a time. An item is pushed onto
the stack by decrementing the stack pointer (SP) by two and writing
the item at the SP address. In other words, the stack grows
downward in memory.

track: Concentric ring on the disk; the standard IBM single
density diskettes have 77 tracks. Each track consists of a fixed
number of numbered sectors. Tracks are numbered from 0 to one less
than the number of tracks on the disk. Data on the disk media is
accessed by combinations of track and sector numbers.

user: Logically distinct subdivision of the directory. Each
directory can be divided into 16 user areas.

vector: Memory location; an entry point into the operating system
used for making system calls or interrupt handling.

wildcard character: Either ? or * characters. The BDOS directory
search functions match ? with any single character and * with
multiple characters.

All Information Presented here is Proprietary to Digital Research

219

Appendix I
ASCII and Hexadecimal Conversions

This appendix contains tables of the ASCII symbols, including
their binary, decimal, and hexadecimal conversions.

 Table I-1. ASCII Symbols

Symbol Meaning Symbol Meaning

ACK acknowledge FS file separator
BEL bell GS group separator
BS backspace HT horizontal tab
CAN cancel LF line feed
CR carriage return NAK negative acknowledge
DC device control NUL null
DEL delete RS record separator
DLE data link escape SI shift in
EM end of medium SO shift out
ENQ enquiry SOH start of heading
EOT end of transmission SP space
ESC escape STX start of text
ETB end of transmission SUB substitute
ETX end of text SYN synchronous idle
FF form feed US unit separator

VT vertical tabulation

All Information Presented here is Proprietary to Digital Research

220

MP/M II Programmer's Guide Appendix I ASCII/Hex Conversions

 Table 1-2. ASCII Conversion Table

Binary Decimal Hexadecimal ASCII

0000000 000 00 NUL
0000001 001 01 SOH (CTRL-A)
0000010 002 02 STX (CTRL-B)
0000011 003 03 ETX (CTRL-C)
0000100 004 04 EOT (CTRL-D)
0000101 005 05 ENQ (CTRL-E)
0000110 006 06 ACK (CTRL-F)
0000111 007 07 BEL (CTRL-G)
0001000 008 08 BS (CTRL-H)
0001001 009 09 HT (CTRL-I)
0001010 010 OA LF (CTRL-J)
0001011 Oil OB VT (CTRL-K)
0001100 012 0C FF (CTRL-L)
0001101 013 OD CR (CTRL-M)
0001110 014 OE SO (CTRL-N)
0001111 015 OF SI (CTRL-0)
0010000 016 10 DLE (CTRL-P)
0010001 017 11 DCI (CTRL-Q)
0010010 018 12 DC2 (CTRL-R)
0010011 019 13 DC3 (CTRL-S)
0010100 020 14 DC4 (CTRL-T)
0010101 021 15 NAK (CTRL-U)
0010110 022 16 SYN (CTRL-V)
0010111 023 17 ETB (CTRL-W)
0011000 024 18 CAN (CTRL-X)
0011001 025 19 EM (CTRL-Y)
0011010 026 IA SUB (CTRL-Z)
0011011 027 1B ESC (CTRL-[)
0011100 028 IC FS (CTRL-\)
0011101 029 1D GS (CTRL-])
0011110 030 1E RS (CTRL-^)
0011111 031 IF US (CTRL-_)
0100000 032 20 (SPACE)
oiO0001 033 21 !
0100010 034 22 “
0100011 035 23 #
0100100 036 24 $
0100101 037 25 %
0100110 038 26 &
0100111 039 27 ‘
0101000 040 28 (
0101001 041 29)
0101010 042 2A *
0101011 043 2B +
0101100 044 2C ,
0i0iIOl 045 2D -
0101110 046 2E .
0101111 047 2F /
0110000 048 30 0
0110001 049 31 1
0110010 050 32 2

All Information Presented here is Proprietary to Digital Research

221

MP/M II Programmer's Guide Appendix I ASCII/Hex Conversions

Table 1-2. (continued)

Binary Decimal Hexadecimal ASCII

0110011 051 33 3
0110100 052 34 4
0110101 053 35 5
0110110 054 36 6
0110111 055 37 7
0111000 056 38 8
0111001 057 39 9
0111010 058 3A :
0111011 059 3B ;
0111100 060 3C <
0111101 061 3D =
0111110 062 3E >
0111111 063 3F ?
1000000 064 40 @
1000001 065 41 A
1000010 066 42 B
1000011 067 43 C
1000100 068 44 D
1000101 069 45 E
1000110 070 46 F
1000111 071 47 G
1001000 072 48 H
1001001 073 49 1
1001010 074 4A i
1001011 075 4B K
1001100 076 4C L
1001101 077 4D M
1001110 078 4E N
1001111 079 4F 0
1010000 080 50 P
1010001 081 51 Q
1010010 082 52 R
1010011 083 53 S
1010100 084 54 T
1010101 085 55 U
1010110 086 56 V
1010111 087 57 w
1011000 088 58 X
1011001 089 59 y
1011010 090 5A z
1011011 091 5B [
1011100 092 5C
1011101 093 5D]
1011110 094 5E ^
1011111 095 5F <
1100000 096 60 ‘
1100001 097 61 a
1100010 098 62 b
1100011 099 63 c
1100100 100 64 d

All Information Presented here is Proprietary to Digital Research

222

MP/M II Programmer's Guide Appendix I ASCII/Hex Conversions

Binary Decimal Hexadecimal ASCII

1100101 101 65 e
1100110 102 66 f
1100111 103 67 g
1101000 104 68 h
1101001 105 69 i
1101010 106 6A j
1101011 107 6B k
1101100 108 6C l
1i0iIOl 109 6D m
1101110 110 6E n
1101111 111 6F o
1110000 112 70 p
1110001 113 71 q
1110010 114 72 r
1110011 115 73 s
1110100 116 74 t
1110101 117 75 u
1110110 118 76 v
1110111 119 77 w
1111000 120 78 x
1111001 121 79 y
1111010 122 7A z
1111011 123 7B {
1111100 124 7C |
1111101 125 7D }
1111110 126 7E ~
1111111 127 7F DEL

All Information Presented here is Proprietary to Digital Research

223

Index

A command Line Interpreter CLI,
3, 15, 101, 104

Abort Specified Process, 145 Compute File Size, 91
Absolute Memory Request, 126 compute-bound process, 5, 8
Access date and time stamp, 67 Conditional Attach Console,
Access Drive, 45, 93 148
allocation vector, 83 Conditional Attach List, 147
ambiguous file reference, 33, Conditional Read Queue, 131

70 Conditional Write Queue, 132
Archive Attribute, 32 console, 12, 13, 23
ASM, 151, 187 Console Input, 57
Assembler Directives, 159 console management, 8
assembler parameters, 151 Console Output, 58
assembly language statements, constants, 154

153 control characters, 24
Attach Console, 23, 58, 135 CP/M programs, 1, 12, 18
Attach List, 23, 146 Create Process, 134
attribute bits, 32 Creation date and time stamp,

 79
B current user number, 15, 24

Bad Sector error, 48 D
bank-switched memory, 2, 9, 11
banked RSP, 13, 19, 192 data area, 24
BASE, 188 data block size, 28
Base Page Areas, 53 date and time, 109
base page fields, 56 date stamp, 37
base page initialization, 17 deblocking, 44
Basic Disk Operating System, default drive, 14

24 default FCB, 55
BDOS file system, 26, 28 default mode, 102
bitmap, 18, 175, 187 Delay, 133
bit vector, 84 delay execution, 10
blocking and deblocking, 44 Delete File, 72
breakpoint, 177 Delete mode, 36
BRS, 192 Delete Queue, 130
burst mode, 43 delimiters, 27

Dequeue list, 6
C Detach Console, 136

Detach List, 146
Call Resident System direct console I/O, 60

Procedure, 139 Direct Memory Address, 82
case translation, 153 directory area, 24
Chain To Program, 104 Directory Codes, 49, 50, 51
checksum verification, 40 directory functions, 25
circular queue, 116 Directory Label, 25, 34, 35,
CLI, 34 37, 70, 105, 106
Close File, 31, 37, 68 disk directory area, 28
command line characters, 56 disk parameter block, 45, 86
command line format, 15, 55 Disk System Reset, 44

Dispatch, 4, 8, 133

All Information Presented here is Proprietary to Digital Research

224

display address, 180 G
drive capacity, 28
drive related functions, 25 generation process, 40
drive reset operation, 45 GENHEX, 183
drive select code, 26, 27 GENSYS, 191
drive-related functions, 25 GET ADDR(ALLOC), 83
DUMP, 184 GET ADDR(DISK PARMS), 86

Get Console Number, 143
E Get Console Status, 64

Get Date and Time, 109, 144
edit control characters, 63 Get Disk Free Space, 103
Enqueue list, 6 Get List Number, 149
Error Codes, 49, 50, 51, 69 GET READ/ONLY VECTOR, 84
Error Flag, 49, 51
error handling XDOS, 125 I
error messages, 48
error mode, 25, 47 initializing an FCB, 31
Expressions, 154 Intel hex format, 151
extended error codes, 51, 52, Inter-process communication,

68 2
extended errors, 47, 48, 114 Interface Attributes, 33, 39,
extended file, 43 66, 67

Internal Data Segment, 124
F internal date and time, 109

FCB, 107 K
FCB checksum, 40
FCB format, 33 key fields, 92
FCB length, 29
File Access, 42 L
file access functions, 25
file attributes, 32 Link-80, 187
File Control Block FCB, 29 Linked Queues, 118
File directory elements, 31 list address, 178
file format, 29 list device, 23
File ID, 31, 38, 42, 67, 79, List Device Management, 8

97 List Output, 59
file naming conventions, 28 load address, 179
File R/O error, 48 lock list, 13, 31, 40, 42
file references, 24 Lock Record, 97
File Security, 40 locked mode, 38
file size, 28, 91 log-in operation, 44
file specification, 26 logical drive, 24, 28
file system, 26, 40, 42 logical interrupt system, 7
file type field, 24, 26
file types, 28 M
filename field, 24, 26
flag over-run, 7 macros, 152
Flag Set, 7, 129 Make File, 32, 36, 37, 39, 78
flag under-run, 7 Make Queue, 129
Flag Wait, 7, 128 Memory Descriptor, 121
Flush Buffers, 44, 104 Memory Free, 127
Free Drive, 45, 94 memory segment, 9, 17, 19
Free Drive call, 41 memory segment index, 121
Function 6 Entry Parameters,

60

All Information Presented here is Proprietary to Digital Research

225

memory structure, 11 Q
miscellaneous functions, 25
MP/M II system processes, 1 qualified reset, 45
MPMLDR, 44 Queue Naming Conventions, 121
multi-sector count, 25, 43, 73Queues, 6, 16, 20, 116
Multi-Sector I/O, 43
Mutual exclusion queues, 6, R

121
R/O error, 48

N radix, 154
random record number, 29

nibble, 51 Raw Console Input, 58
nucleus, 4 Raw Console Output, 59
Numeric Constants, 154 RDT arguments, 174

RDT commands, 174, 175
0 Read Console Buffer, 62

Read File, 37
open File, 32, 39, 66 Read File XFCB, 107
open file item, 67 Read mode, 36
open mode, 39 Read Queue, 131
open Queue, 130 Read Random, 87
operation codes, 164 Read Sequential, 73
operators, 157 Read/only attribute, 32
ORG statements, 188 read/only mode, 38, 42, 67

Ready List, 4, 124
P record, 29

record buffer, 44
Page Relocatable Programs, 18,record locking, 40, 42

187 register A, 49
Parse Filename, 27, 140 register passing conventions,
password, 24, 110 21
password field, 26, 56 register storage allocation,
Password protection, 36 115
passwords, 36, 37 relocatable addresses, 178
performance, 3 Relocatable Debugging Tool
permanent drives, 45, 46 RDT, 173
physical error codes, 52, 66, Relocatable Memory Request,

68, 71 127
physical errors, 47 removeable drive, 45, 46
physical file size, 91 Rename File, 80
Poll, 128 Reserved Words, 155
polling, 8 Reset Disk System, 65
Print String, 62 Reset Drive, 44, 93
PRL File Format, 187 Resident System Procedure,
PRLCOM, 184 20, 191
process, 23, 40, 41, 42 Resident System Processes, 2.
process anming conventions, 13, 191

116 Return and Display mode, 102
Process Descriptor, 4, 23, return codes, 49

111, 192 Return Current Disk, 81
Process Descriptor address, 23Return Directory Label Data,
process priority, 5, 113 106
process states, 4 Return Login Vector, 81
program load, 18 return modes, 102

return MP/M Version Number,

All Information Presented here is Proprietary to Digital Research

226

Return Process Descriptor, 145 time stamping, 25
Return Serial Number, 110 time stamps, 37
Return Version Number, 64 TOD, 37
RSP Code, 191 trace mode, 181

S U

schedule execution, 10 Unlock Record, 42, 99
Search For First, 70 unlocked mode, 38, 42
Search For Next, 70, 71 Update date and time stamp, 69
Select Disk, 65 User 0, 34
Select error, 48 user directories, 33
Send CLI Command, 138 user number, 33, 34
sequential I/O processing, 43
SET BDOS Error Mode, 102 V
Set Console, 136
Set Date and Time, 109 virtual file size, 91
Set Default Password, 110
Set Directory Label, 35, 105 W
SET DMA Address, 82
Set Error Mode, 47 wait loop, 3, 8, 10
Set File Attributes, 32, 85 Write File, 36
Set List, 147 Write File XFCB, 108
Set Multi-Sector Count, 43, Write mode, 36

51, 101 Write Protect Disk, 46, 83
Set Priority, 135 Write Queue, 132
Set Random Record, 92 Write Random function, 89
SET/GET USER CODE, 86 Write Random With Zero Fill,
shared access mode, 42 95
Source files, 29 Write Sequential, 76
Sparse files, 29
SPR files, 193 X
SUBMIT, 14
System Attribute, 32 XFCB, 34, 108
system call user stacks, 12 XIOS, 44
system console, 2, 14
System Data Address, 143 8080 CPU Flags, 182
System Data Page, 122 8080 CPU Registers, 182
system drive, 17
system generation, 2, 19
System Page Relocatable

Files, 193
System Reset, 57
system stacks, 114
System timing, 2, 10

T

Terminal Message Process TMP,
3, 14

Terminate Process, 134
Test and Write, 42
Test and Write Record, 95
the default FCB, 55
time of day, 10

All Information Presented here is Proprietary to Digital Research

227

MP/M Operating System

Release 2.1

Release Notes

Copyright © 1982

Digital Research
P.O. Box 579

160 Central Avenue
Pacific Grove, CA 93950

(408) 649-3896
TWX 910 360 5001

All Rights Reserved

All Information Presented here is Proprietary to Digital Research

228

All Information Presented here is Proprietary to Digital Research

229

Dear MP/M II User:

Digital Research has developed the MP/M JIT.M. operating system
in response to numerous customer requests to add file sharing
capability to MP/M Release 1.1. The design of MP/M II is a
reflection of our goal to provide you with a state of the art
operating system that can be configured for a wide variety of
computer hardware.

This shipment contains the version 2.1 release of our MP/M II
operating system. We have been pleased with the response to MP/M II
Release 2.0 and hope to see comparable response to MP/M II Release
2.1 regarding design, possible extensions, and errors in
implementation. We hope to maintain the same level of confidence
that the computer industry has had in our CP/M 0 operating system.

On the basis of our experience and the experience of MP/M II
users, we estimate it requires less than a week to implement a
simple polled MP/M II on a computer that has a running version of
CP/M Release 2.2. Implementing a highly optimized MP/M II system
with full interrupts and bank switched memory can require several
weeks. Of course, the time to perform such a reconfiguration will
vary widely depending on the experience of the programmer and the
complexity of the hardware.

Note: Make sure you use the SET or STAT command to make the
USER.PRL file into a system file.

Contact the Digital Research Technical Support staff (408) 375
6262 if you experience difficulties reconfiguring MP/M II. By
sending in your registration card you can insure that we will mail
MP/M II application notes and patches that correct implementation
errors.

Sincerely,

TECHNICAL SUPPORT

All Information Presented here is Proprietary to Digital Research

230

All Information Presented here is Proprietary to Digital Research

231

MP/M II T.M. Operating System
Release 2.1

Extended File Locking

Addendum to the MP/M II Operating SZstem Programmer's Guide
Copyright © 1982 by Digital Research

MP/M II is a trademark of Digital Research.
Compiled January 1982

Extended file locking is a new facility implemented in release
2.1 of MP/M II T.M. . Extended file locking enables a process to
maintain a lock on a file even after the file is closed. This
facility allows a process to rename, set the attributes, or delete a
file without having to contend with the possibility of interference
from other processes after the file is closed. Also, a process can
reopen a file with an extended lock and continue normal file
processing. For example, a process can open a file, perform file
operations on the file, close the file, rename the file, reopen the
file under its new name, and proceed with file operations, without
ever losing the file's lock list item and control over the file.

Extended file locking is only available to files that are
opened in the default open mode (locked mode). To extend a file's
lock, set interface attribute FV when closing the file. This
attribute is only interrogated by the Close function when it is
closing a file permanently. Thus, interface attribute F51 must be
reset when the close call is made. Also, if a file has been opened
N times (more than once), this attribute is only interrogated when
the file is closed for the Nth time.

To maintain an extended file lock through a Rename File call or
a Set File Attributes call, set interface attribute F5' of the
referenced FCB when making the call. This attribute is only honored
for extended file locks, not normal locks. Setting attribute F5'
also maintains an extended file lock for the Delete File function,
but setting this attribute also changes the nature of the Delete
function to an XFCB-Only delete. If successful, all three of these
functions delete a file's extended lock item when with attribute F51
reset. On the other hand, if they return with an error code, the
extended lock item is not deleted.

A standard open call can be made to resume file operations on a
file with an extended lock. The open mode, however, is restricted
to the default locked mode. The following list illustrates uses of
extended locks.

1

All Information Presented here is Proprietary to Digital Research

232

MPM/II Release 2.1 Extended File Locking

-Open file EXLOCK.TST in locked mode.

-Perform file operations on the file EXLOCK.TST using the open
FCB.

-Close file EXLOCK.TST with interface attribute F6’ set to
retain the file's lock item.

-Use the Rename File function to change the name of the file to
EXLOCK.NEW with interface attribute F5’ set to retain the
file's extended lock item.

-Open the file EXLOCK.NEW in locked mode.

-Perform file operations on the file EXLOCK.NEW using the opened
FCB.

-Close file EXLOCK.NEW with interface attribute F6' set to
retain the file's lock item.

-Set the Read-Only attribute and release the file's lock item by
using the Set File Attributes function with interface attribute
F51 reset. At this point, the file EXLOCK.NEW becomes
available for access by another process.

All Information Presented here is Proprietary to Digital Research

233

MP/M II T.M. Operating System
Release 2.1

Compatibility Attributes

Addendum to the MP/M II Operating System Programmer's Guide
Copyright © 1982 by Digital Research

CP/M is a registered trademark of Digital Research.
MP/M and MP/M II are trademarks of Digital Research.

Compiled February 1982

The MP/M II T.M. file system introduced some new restrictions
relating to file operations that were not present in MP/M T.M. 1. 1 or
CP/M© . For example, if a process opens a file in the default mode
(locked), MP/M II does not allow other processes on the system to
open, delete, or rename the file until the process opening the file
either closes the file or terminates. In addition, MP/M II does not
allow a process to perform file operations with an FCB that has not
been activated by a successful open or make operation, or with an
FCB that has been deactivated by a close operation. These
restrictions protect an MP/M II user from interference from other
users on his open files. To illustrate, it is this protection that
enables an MP/M II user to edit a file with the assurance that
another user cannot delete or modify his file during his edit
session.

The new restrictions added to MP/M II provide file security
when multiple users are running the system. The preceding example
describes restrictions required to prevent collisions on file
activity between independent processes. Another new MP/M II
restriction sets limits on how a process can modify open FCBs.
These limits are enforced by checksum verification of open FCBs and
protect the integrity of the MP/M II file system from corrupted
FCBs. Note that the new MP/M II restrictions are not intended to
protect a user from his own actions. Instead, they ensure that the
activity of one user does not adversely affect other users on the
system.

Generally, the new MP/M II file system restrictions create
little difficulty for new application development. In fact, they
enforce good programming practice. However, because of these new
restrictions, some CP/M and MP/M software written before MP/M II's
release does not run on MP/M II. In addition, multiple copies of
some software do not run because the default open mode for MP/M II
is a locked mode in which only one process can open a file.

To address these problems, Digital Research has added
compatibility attributes to MP/M II, Release 2.1. The compatibility
attributes are defined as attributes Fl' through F4’ of program
files. A new GENSYS option determines whether the attributes are to
be activated. If activated, the Command Line Interpreter (CLI)
interrogates these attributes during program loading and modifies
the MP/M II ground rules for the loaded program as described below.

1

All Information Presented here is Proprietary to Digital Research

234

MP/M II Release 2.1 Compatibility Attributes

Note that the compatibility attributes should not be used with new
software. They are intended for use with working software developed
for CP/M and MP/M 1.1. This especially applies to compatibility
attribute F4' , which disables FCB checksum verification on read and
write operations. Use this attribute sparingly and only with
programs that are known to work.

COMPATIBILITY ATTRIBUTE DEFINITIONS

F1’ MP/M 1.1 Default Open. Processes running with this attribute
have all files opened in locked mode marked as Read-Only in
the System Lock List. This allows all processes with this
attribute set to read and write to common files with no
restrictions. There is, however, no record locking provided.
In addition, this attribute also allows a process to write to
a file opened by another process in Read-Only mode. To be
safe, all static files such as program and help files should
be made Read-Only when this compatibility attribute is used.

F2’ Partial Close default. Processes running with this attribute
have their default close mode changed from permanent close to
partial close. This attribute is for programs that close a
file to update the directory but continue to use the file.
Note that MP/M II assumes a process has finished with a file
when the number of closes issued to the file equals the
number of opens. A side effect of this attribute is that
files opened by a process are not released until the process
terminates. It might be necessary to set the System Lock
List parameters to high values when using this attribute.

F3’ Ignore Close Checksum Errors. This attribute changes the way
Close Checksum errors are handled for a process. Usually, a
message is printed on the console, and the process is
terminated. When this attribute is set and a checksum error
is detected during a close operation, the file is closed if a
lock list item exists for the file. Otherwise, an
unsuccessful close error code is returned to the calling
process.

F4’ Disable FCB Checksum verification for read and write
operations. Setting this attribute also sets attributes F2'
and F3'. This attribute should be used carefully because it
effectively disables MP/M II's file security. Use this
attribute only with software that is known to work.

All Information Presented here is Proprietary to Digital Research

235

MP/M II Release 2.1 Compatibility Attributes

PROCEDURE FOR USING THE COMPATIBILITY ATTRIBUTES

1) Answer yes to the GENSYS question "Enable Compatibility
Attributes (N) ?".

2) Use the MP/M II Utility SET to set the desired combination
of computability attributes in the program name.

EXAMPLES:

OA>SET filespec [Fl=on]
OA>SET filespec [Fl=on,F3=on]
OA>SET filespec [F4=on]

If you have a program that runs under CP/M or MP/M 1.1 but does
not run properly under MP/M II, use the following guidelines to
select the compatibility attributes to set for the program.

1) If the program ends with the message, "File Currently
Opened" when multiple copies of the program are run, set
compatibility attribute F1’. As an alternative, you might
consider placing all common static files under User 0 with
the SYS and R/O attributes set.

2) If the program terminates with the message, "Close Checksum
Error", set compatibility attribute F3’.

3) If the program terminates with an I/O error, try running the
program with attribute F2' set. If the problem still
occurs, try attributes F2' and F3’. If the problem still
persists, then try attribute F4’. Use attribute FV only
as a last resort.

It might be necessary to increase the GENSYS parameters that
set the maximum number of files a process can open and the size of
the System Lock List when using compatibility attributes F2’ and
F4’. This might be required because both default to partial closes.
As a result, system lock list entries consumed by opening files are
not released until the process ends. Generally, if a process ends
with the message "No Room in System Lock List" or "Open File Limit
Exceeded", it usually indicates that the above GENSYS parameters
need to be increased. Another option is to patch in a BDOS Free
Drive call at a point in the program where no files are active.
Note that a Free Drive call specifying all drives, purges all file
system lock entries belonging to the calling process.

3

All Information Presented here is Proprietary to Digital Research

236

MP/M II Release 2.1 Compatibility Attributes

When GENSYS activates compatibility attributes, the Command
Line Interpreter copies the settings for attributes Fl' through F4’
of the filename of the loaded program into byte lDH of the process
descriptor as shown below:

PROCESS DESCRIPTOR BYTE IDH

(Bits defined 7-0 high-order to low-order)

Bit 7 set = Fl
Bit 6 set = F2
Bit 5 set = F3
Bit 4 set = F4

All Information Presented here is Proprietary to Digital Research

237

MP/M II T.M. Operating System
Release 2.1

Programming Guidelines

Addendum to the MP/M - II Operating System Programmer's Guide
Copyright © 1982 by Digital Research

CP/M is a registered trademark of Digital Research.
MP/M and MP/M II are trademarks of Digital Research.

Compiled January 1982

This guideline provides additional discussion on the
information presented in the MP/M II TM Operating System Programmer’s
Guide. In particular, this (5-ocument emphasizes those areas of MP/M
II where restrictions exist that did not exist in versions 1 and 2
of CP/M (C)and version 1 of MP/M T.M. The intent is to enable the MP/M
II application programmer to avoid potential problems with new
software. As a prerequisite, the reader should be familiar with the
material presented in the MP/M II Operating System Programmer's
Guide .

 1) Always use the following sequence when performing file operations
that require an open file. Under MP/M II, these operations are
the BDOS read, write, lock, and unlock record commands.

Activate a file's FCB with a BDOS Open or Make function call
before using the FCB in a file operation. Verify that the Open
or Make operation was successful. MP/M II only accepts FCBs
activated by a successful Open or Make call for open file
operations. If an FCB that has not been activated is used,
MP/M II returns a checksum error.

Perform all file operations using activated FCBs. Note that
MP/M II does not deactivate an activated FCB when it returns
error codes for file operations. Generally, only the current
record and random record fields of an activated FCB should be
modified. In addition, all file operations with an activated
FCB must be made under the user number that was in effect when
the FCB was activated. A similar restriction applies to
activated FCBs that specify the default drive. All file
operations specifying such an FCB must be made under the
current drive that was in effect when the FCB was activated.
Item 3 in this list covers the complete rules regarding
activated FCB modification.

1

1

All Information Presented here is Proprietary to Digital Research

238

MP/M II Release 2.1 Programming Guidelines

o If a process has completed file operations on a file but still
has a significant amount of processing left to do, the file
should be closed. This applies even if the file was not
modified. With some exceptions, the lock list entry associated
with a file in the system lock list is not released until a
file is permanently closed (MP/M II Operating System
Programmer's Guide see Section 2.2.9.) MP/M II restricts
access to a file by other processes while a lock list item for
the file resides in the system lock list. It is not necessary
to close input files if a process is about to end. At
termination, all lock items belonging to a process are
released. Output files, however, must always be closed or data
might be lost. Note that a successful permanent close
operation deactivates the FCB and removes the file's item from
the system lock list. If the deactivated FCB is used in a
subsequent open file operation, MP/M II returns a checksum
error.

2) If a process opens the same file more than once, a matching
number of close commands must be issued to the file to remove the
file's lock list item from the system lock list. Thus, if a file
has been opened N times, the first N-1 close operations issued to
the file default to partial close operations. Only the last
close, close operation N, is interpreted as a permanent close.
By definition, a permanent close is a close operation that
removes the referenced file's item from the system lock list.
Note that only one lock list item is allocated in the system lock
list for a file regardless of the number of FCBs a process has
opened for the file.

3) The following list specifies how an activated FCB can be changed
without affecting the FCB checksum. MP/M II returns a checksum
error code and does not perform the requested operation if an FCB
with an invalid checksum is used in an open file operation.

o FCB(O) cannot specify a new drive.

o With the exception of interface attributes FV and F6' for the
BDOS Close function, FCB(l) through FCB(11) cannot be changed.

o The high-order 3 bits of FCB(12) cannot be changed. The low
order 5 bits can be changed. Note that when a file is opened
in the default open mode (locked mode), the high-order 3 bits
of this FCB field are set to zeros.

o FCB(13) cannot be changed.

o FCB(14) and FCB(15) can be changed.

o FCB(16) through FCB(31) cannot be changed.

O FCB(32) through FCB(35) can be changed.

2

All Information Presented here is Proprietary to Digital Research

239

MP/M II Release 2.1 Programming Guidelines

If compatibilty with future releases of MP/M and CP/M is a
requirement, programs should restrict open FCB modification to
the FCB fields 32 through 35. In particular, Digital Research
does not support techniques that involve modifying fields 12, 14,
and 15 of open FCBs.

4) Processes that access a printer must issue a Detach List device
to free the printer before another process can use the printer.
If the Detach List call is not made, a process that accesses a
printer continues to own the printer until it ends.

5) CP/M programs that create submit files for chaining must be
modified to work under MP/M II. MP/M II requires a different
filename for submit files, that includes the originating console
number, and requires that a submit flag be set in the System Data
Page. The technique for creating and executing submit files is
described in MP/M II Application Note 07. Note that MP/M II also
has a Program Chain (Function 47) command that provides an
efficient mechanism for program chaining.

6) CP/M programs that make direct BIOS calls for disk I/O do not
work under MP/M II. MP/M II does support direct XIOS calls for
the console and printer, but not to the disk. If programs must
make direct XIOS disk calls, a technique strongly discouraged in
a multi-user environment, two levels of indirection must be used
to obtain the real XIOS jump table address. The second level of
indirection is required because an intercept table handles the
console and printer.

The following two steps should be performed in a program before
making direct XIOS calls to a disk. The f first step is to make a
BDOS Write Protect Disk (Function 28) call to the disk to ensure
that no other process has open files on the disk. Secondly, the
MXDisk mutual exclusion queue message should be read to prevent
other programs from making BDOS disk function calls while your
program is making direct XIOS calls. After completing your
direct XIOS calls, write back the MXDisk message and then reset
the drives you have set to Read-Only.

7) The following procedure is a protocol that multiple processes can
use to coordinate record update and addition operations to a
shared file. Each process must open the shared file in unlocked
mode. This procedure also assumes that records containing binary
zeros are null records.

3

All Information Presented here is Proprietary to Digital Research

240

MP/M II Release 2.1 Programming Guidelines

O Attempt to lock the record.

O If the lock attempt fails because another process has locked
the record, delay and repeat the procedure.

o If the lock attempt fails because the record does not exist in
the file, add a record initialized to binary zeros to the file
with the BDOS Write Random with Zero Fill command and repeat
the procedure. Note that files opened in unlocked mode are
extended in block units and not in record units as is the case
for files opened in the default locked mode.

O If the lock attempt succeeds, read the record, update it, and
then unlock it.

8) Multiple FCB I/O is a technique that involves opening each extent
for a file independently and maintaining them in a table in
memory. Then random I/O is handled by selecting the proper FCB
from the table, setting the current record field to the proper
record number within the extent, and making a sequential Read or
Write command. When processing is completed, each FCB is closed.
The maximum file size that can be accessed with this technique is
512K bytes. This limits the maximum table size to 32 FCBs. Note
that this technique provides a method of performing random I/O
that is compatible with CP/M 1.4.

Multiple FCB I/O has to be performed carefully under MP/M
II because of the restrictions MP/M II places on file operations
to provide file security. Generally, an FCB should not be used
in file I/O unless it has been activated and it should not be
modified while it is activated (see items 1 and 3). In addition,
the number of opens and closes issued to a file is important (see
item 2). Note that all 32 bytes of each extent's FCB should be
maintained in the open FCB table. Also, verify that interface
attribute F8' is set to 1 in all FCBs if the first FCB has F8’
set to 1. F8' set to 1 indicates the file was opened under user
0 although the current user number is nonzero (see Function 15 in
the MP/M II Operating System Programmer's Guide).

4

All Information Presented here is Proprietary to Digital Research

241

MP/M II T.M. Operating System Release 2.0
Application Note 01, 9/14/81

Copyright © 1981 by Digital Research
MP/M and MP/M II are trademarks of Digital Research.

Compiled September 1981

SUPPRESSING THE MP/M T.M.LOADER DISPLAY

Applicable products and version numbers: MP/M II Release 2.0

Program: MPMLDR.COM

When the MP/M II loader reads the MPM.SYS file, it displays a
load map on console #0. In some applications you might want to
suppress this display.

To suppress the load map display on console #0, type the
following RET instruction into the LDRBIOS.ASM file using any
standard editor. The RET instruction replaces the console output
code.

;Loader BIOS jump vector:
 . . .

jmp conout
. . .

conout:
ret

Assemble LDRBIOS.ASM to create LDRBIOS.HEX. Integrate the new
LDRBIOS.HEX file into the MPMLDR.COM file according to instructions
provided in the MP/M II Operating System Guide. Then,
update the system tracks of the boot disk with the new loader.

Licensed users are granted the right to include these
enhancements in MP/M II Release 2.0 software.

1

All Information Presented here is Proprietary to Digital Research

242

All Information Presented here is Proprietary to Digital Research

243

MP/M II T.M. Operating System Release 2.0
Application Note 02, 9/14/81

Copyright © 1981 by Digital Research
MP/M II is a trademark of Digital Research.

SETTING AND RESETTING THE RAW CONSOLE I/O MODE

Applicable products and version numbers: MP/M II". Release 2.0

Some application programs require raw input from the console.
Raw input implies that the operating system takes no action on
special characters, such as CTRL-C.

Execute the following code to place an application program into
a raw console input mode.

MVI C,9CH
CALL XDOS ; get process descriptor address
LXI D,6
DAD D
MOV A,M
ORI 80H ; turn 'on' the high-order bit of first
MOV M,A ; character in the process name

Execute the following code to exit the raw console input mode.

MVI C,9CH
CALL XDOS ; get process descriptor address
LXI D,6
DAD D
MOV A,M
ANI 7FH ; turn 'off' the high-order bit of first
MOV M,A ; character in the process name

Functions 3, 4, and 6 place the system into raw console input
mode. All other console I/O functions reset the system to normal
console input mode.

Raw console input mode can cause problems. You cannot abort a
process running in raw mode because the system ignores all control
characters. To abort a process, use Function 11 before using any
disk I/O functions. Function 11 returns the system to normal
console mode.

Licensed users are granted the right to include these
enhancements in MP/M II Release 2.0 software.

1

All Information Presented here is Proprietary to Digital Research

244

All Information Presented here is Proprietary to Digital Research

245

MP/M II T.M. Operating System Release 2.0
Application Note 03, 9/14/81

Copyright © 1981 by Digital Research
MP/M II is a trademark of Digital Research.

CHANGING PRL FILE MINIMUM BUFFER SIZE REQUIREMENTS

Applicable products and version numbers: MP/M T.M. Release 2.0

You might want to allocate a larger default buffer for a
program such as the editor. You can change the minimum buffer size
requirements for PRL files. The following procedure demonstrates
how to change the minimum buffer size requirements for ED from 4k to
8k bytes.

OA>ddt ed.prl
[MP/M] DDT VERS 1.1
NEXT PC
2300 0100
-sl04
0104 00 00
0105 10 20
0106 .
-v2300
0044
-ied.prl
-w44
-go

Bytes 4 and 5 of the PRL header record (relative to the base)
contain the low- and high-order bytes for the minimum buffer size
specification.

Licensed users are granted the right to include these
enhancements in MP/M II Release 2.0 software.

All Information Presented here is Proprietary to Digital Research

246

All Information Presented here is Proprietary to Digital Research

247

MP/M II T.M. Operating System Release 2.0
Application Note 04, 9/14/81

Copyright © 1981 by Digital Research
MP/M and MP/M II are trademarks of Digital Research.

ACCESSING THE INTERNAL MP/M TM TOD

Applicable products and version numbers: MP/M II Release 2.0

Some application programs might require access to the internal
MP/M II time and date fields to set initial values. Execute the
following code sequence at the end of your MP/MT.M. XIOS system
initialization procedure. Place the code at the end because the
XDOS call to obtain the system data page address might cause
interruptions.

MVI C,9AH
CALL XDOS ;obtain the system data page address

;*** warning ***
;the XDOS call enables interrupts

LXI D,OOFCH
DAD D ; hl pointer -> TOD
MOV E,M
INX H
MOV D,M ; de TOD

The assembly language subroutine TODCNV.ASM distributed on the
MP/M II release disk converts from ASCII string representation of
the time and date to MP/M II internal time and date format.

Licensed users are granted the right to include these
enhancements in MP/M II Release 2.0 software.

1

All Information Presented here is Proprietary to Digital Research

248

All Information Presented here is Proprietary to Digital Research

249

MP/M II T.M. Operating System Release 2.0
Application Note 05, 9/14/81

Copyright © 1981 by Digital Research
MP/M II is a trademark of Digital Research.

DMA DISK CONTROLLERS WITH BANKED MEMORY SYSTEMS

Applicable products and Version Numbers: MP/M II Release 2.0

Be extra careful with bank switched memory systems that have
Direct Memory Access disk controllers. Bank switching is not
allowed during a transfer of data from the disk controller to a
target bank.

DMA from the disk controller is obtained through common memory
then copied from common memory into the user buffer that you wanted.
Sectors larger than 128 bytes are placed in a common memory buffer.
The specified sector is then transferred to the target buffer. This
is a reasonable technique in systems where deblocking is required

Use the following procedure if DMA is to occur directly into
the user buffer bypassing common memory. Set a DMA active flag to
true before each DMA operation. Reset the flag following each
operation.

MVI A,FFH
STA DMACTVE

; initiate DMA operation

; perform flag wait or poll for operation complete

XRA A
STA DMACTVE

Place the following code sequence in the XIOS select memory
procedure to ensure that the bank cannot be switched during a DMA
operation:

SELMEMORY:
LDA DMACTVE
ORA A
jz OKTOSWITCH ;jump if not in DMA operation

; Next, the bank to be switched can be
; compared with the current bank. If
; it matches, the DMA operation will not be affected.

jz OKTOSWITCH ;no bank change required

1

All Information Presented here is Proprietary to Digital Research

250

MP/M II Release 2.0, Application Note 05, 9/14/81 (cont'd)

; A new bank is specified and a DMA operation is in
; progress. A busy wait must now be performed to wait
; until the DMA operation is complete.

*** warning ***

;The selmemory call is made from inside the dispatcher
;therefore interrupts are disabled and nothing must
;be done that could force a dispatch.

BUSYWAIT:
IN DMASTATUSPORT ;This is a "BUSY-WAIT"
ANI DMADONE
jz BUSYWAIT ;loop until the DMA is complete

Place the following code into the remaining select memory procedure.

OKTOSWITCH:

. . .

. . .

RET

Licensed users are granted the right to include these
enhancements in MP/M II Release 2.0 software.

All Information Presented here is Proprietary to Digital Research

251

MP/M II T.M. Operating System Release 2.0
Application Note 06, 9/14/81

Copyright © 1981 by Digital Research
MP/M II is a trademark of Digital Research.

USING THE SEND CLI COMMAND XDOS FUNCTION

Applicable products and version numbers: MP/M II Release 2.0

Use of the Send CLI Command XDOS Function can effectively
implement a menu driven application program. The following steps
outline use of the SEND CLI XDOS Function.

1) Change the priority of the calling process so that it is
higher (actually a lower value) than the TMP.

2) Obtain the console number of the calling process.

3) Assign the console to the Command Line Interpreter.

4) Issue the send CLI command function call.

5) Issue an ATTACH console function to get the console back
after the initiated process has terminated.

6) Restore the priority of the calling process to its original
value (usually 200).

Segments of a menu driven program named MENU appear in the
following example.

;XDOS Function Equate Table

setpriority equ 145
attachconsole equ 146
assignconsole equ 149
sendCLIcommand equ 150
getconsole equ 153

MENU:

mvi e,190
mvi c,setpriority
call BDOS ;set priority to 190
mvi c,getconsole
call BDOS ;get console # in A reg
sta AssignPB ;fill in
sta CLIcommand+l ;console fields
lxi d,AssignPB
mvi c,assignconsole

1

All Information Presented here is Proprietary to Digital Research

252

NP/M 11 Release 2.0, Application Note 06, 9/14/81 (cont'd)

call BDOS ;assign console to CLI
inr a
jz cannotassign ;assign failed
lxi d,CLIcommand
mvi c,sendCLIcommand
call BDOS ;send CLI command
mvi c,attachconsole
call BDOS ;attach console
mvi e,200
mvi c,setpriority
call BDOS ;set priority back to 200

AssignPB:
db $-$;console number
db Icli I ;name (cli is lower case)
db 0

CLIcommand:
db 0 ;default disk / user code
db $-$;console number
db this is an ASCII string terminated with

a
;null that is exactly as you would run

the
;program from the console. e.g.

'PIP LST:=MYPROG.LST[PT8]',O
. . .

Licensed users are granted the right to include these
enhancements in MP/M II Release 2.0 software.

2

All Information Presented here is Proprietary to Digital Research

253

MP/M II T.M. Operating System Release 2.0
Application Note 07, 9/14/81

Copyright © 1981 by Digital Research
MP/M II is a trademark of Digital Research.

CREATING A SUBMIT FILE FROM AN APPLICATIONS PROGRAM

Applicable products and version numbers: MP/M II T.M. Release 2.0

The following procedure shows you how to create a submit file
from an applications program and force its execution. The procedure
to terminate a submit file job is included.

1) Obtain the temporary file drive from the system data page

2) Obtain the console number at which the program is executing.

3) Create the n.SUB file. Use n to specify the console
number.

4) Set the appropriate submit flag in the array to on. The
array is contained in the system data page.

;BDOS / XDOS Function Equate Table

closefile equ 16
searchfirst equ 17
deletefile equ 19
makefile equ 22
getconsole equ 153
getsysdatadr equ 154
subflgofst equ 128

mvi c,getsysdatadr
call BDOS
lxi d,196 ;temp file drive offset
dad d
mov a,m
sta FCB
mvi c,getconsole
call BDOS
sta console
adi lot
sta FCB+2 ;put console # in fname
lxi d,FCB
mvi c,searchfirst
call BDOS ;see if file there

1

All Information Presented here is Proprietary to Digital Research

254

MP/M II Release 2.0, Application Note 07, 9/14/81 (cont'd)

inr a
jz nofile
lxi d,FCB
mvi c,deletefile
call BDOS ; delete old version first

nofile:
lxi d,FCB
mvi c,makefile
call BDOS ; make the n.SUB file

Now, write the records into the n.SUB file as
follows:

-one line of the submit file per record

-last record first (i.e. in reverse order
that they are to be executed

-each record in the following form:

[CNTI[ASCII command line][NULL]
 where: CNT = # chrs in cmnd ln, 1 byte
 ASCII command line <= 125 chrs

NULL zero, 1 byte

d,FCB
lx1
mvi c,closefile
call BDOS ;close the n.SUB; file
mvi c,getsysdatadr
call BDOS ;get system data page adr
lda console ;retrieve the saved con #
adi subflgofst ;add offset to base of
mov e,a ;submit flag array
mvi d,O
dad d ;DE = submitflag(console);
mvi m,Offh ;set 'on' submit flag

; terminate the program

FCB:
DB ;disk drive, usually A:
DB ‘n’ ;filename
DB 'SUB' ;filetype
DB 0 ;file extent
DS 20 ;remainder of FCB

console:
ds 1 ;temp loc for console #

All Information Presented here is Proprietary to Digital Research

255

MP/H II Release 2.0, Application Note 07, 9/14/81 (cont'd)

Terminate the operation of a submit job by zeroing a submit
flag located in the SYSTEM DATA PAGE region of memory. To locate
and zero the submit flag for a console use the following code
procedure.

XDOS Function Equate Table

getconsole equ 153
getsysdatadr equ 154
subflgofst equ 128

mvi c,getconsole
call BDOS ; get console #
push psw ; save console #
mvi c,getsysdatadr
call BDOS ; get system data page adr
POP psw ; restore console #
adi subflgofst
mov l,a ; hl = address of sub. flag
mvi m,O ; zero submit flag

Licensed users are granted the right to include these
enhancements in MP/M II Release 2.0 software.

3

All Information Presented here is Proprietary to Digital Research

256

All Information Presented here is Proprietary to Digital Research

257

MP/M II T.M. Operating System Release 2.0
Application Note 08, 9/14/81

Copyright © 1981 by Digital Research
MP/M and MP/M II are trademarks of Digital Research.
CP/M is a registered trademark of Digital Research.

Wordstar is a registered trademark of
MicroPro International Corporation.

FILE SHARING

Applicable products and version numbers: MP/M II T.M. Release 2.0

Multiple users can share files using the MP/M II file system.
An applications program such as Wordstar requires that files be
open while the program is running. Multiple users of the
application will need to share the open files. Usually under MP/M
II, sharing of files causes problems if the applications program is
not structured to open files in Read-Only mode. The default mode
for the open function is locked mode which prevents the sharing of
files. Files are opened in locked mode for earlier versions of both
CP/M 0 and MP/M T.M. as well.

To enable file sharing, place all files to be shared under USER
0 on the default disk. Using the SET utility, assign the attributes
SYS (System) and RO (Read-Only) to the files. The BDOS opens the
file in Read-Only mode regardless of which mode the open function
specified. An example is shown below.

OA>set wsmsgs.com [SYS,R0]

Licensed users are granted the right to include these
enhancements in MP/M II Release 2.0 software.

1

All Information Presented here is Proprietary to Digital Research

258

All Information Presented here is Proprietary to Digital Research

259

MP/M II T.M. Operating System Release 2.0
Application Mote 09, 9/14/81

Copyright © 1981 by Digital Research
MP/M II is a trademark of Digital Research.

PROGRAM CONTROL OF THE CONTROL-P SWITCH

Applicable products and version numbers: MP/M II T.M. Release 2.0

An applications program might need to echo console I/0 to the
printer while under program control. Use the following procedures
to set and clear the CTRL-P flags. The array of flags is located at
the SYSTEM DATA PAGE address + 126.

Setting CTRL-P Flag
mvi c,9ah ; Get System Data Page address
call BDOS
lxi d,126
dad d ; add 126 to Sys. Data Page addr.
mov e,m
inx h
mov d,m ; DE addr. of CTRL-P array
push d
mvi c,Oa4h ; Get List Number
call BDOS
mov e,a
mvi d,O
POP h
dad d
mvi m,Offh ; set CTRL-P flag

; cons. I/O is echoed from now on

Clearing CTRL-P Flag
mvi c,9ah ; Get System Data Page address
call BDOS
lxi d,126
dad d ; add 126 to Sys. Data Page addr.
mov e,m
inx h
mov d,m ; DE addr. of CTRL-P array
push d
mvi c,Oa4h ; Get List Number
call BDOS
mov e,a
mvi d,O
POP h
dad d
mvi m,0 ; reset CTRL-P flag

; console I/O echo is now off

Licensed users are granted the right to include these
enhancements in MP/M II Release 2.0 software.

1

All Information Presented here is Proprietary to Digital Research

260

All Information Presented here is Proprietary to Digital Research

261

MP/M II T.M. Operating System Release 2.0
Application Mote 10, 9/14/81

Copyright © 1981 by Digital Research
MP/M II is a trademark of Digital Research.

COLD BOOT STARTUP

Applicable products and version numbers: MP/M II T.M. Release 2.0

MP/M Ii can execute one command upon cold boot. However, the
system can execute any number of commands upon cold boot if the
initial command is SUBMIT.

To execute the Startup command place the Startup command
singularly into a file using standard command format. Name this
file n.SUP where n is the console number that executes the
command. The n.SUP file resides on the system drive at the
desired USER number or at USER 0 with a SYS (SYSTEM) attribute.
Examples are shown below.

Startup file: 0.SUP

Command in the
Startup file: SUBMIT STARTO

Licensed users are granted the right to include these
enhancements in MP/M II Release 2.0 software.

All Information Presented here is Proprietary to Digital Research

262

All Information Presented here is Proprietary to Digital Research

263

MP/M II T.M. Operating System Release 2.0
Application Note 11, 9/14/81

Copyright © 1981 by Digital Research
MP/M II is a trademark of Digital Research.

SUBMIT ENHANCEMENTS

Applicable products and version numbers: MP/M II T.M. Release 2.0

Enhancements to SUBMIT include the following new features and
facilities.

INCREASED n.SUB FILE SIZE: SUBMIT file size is now unlimited.
The n.SUB file originally was limited to one extent, 128 lines.

CHANGING THE USER NUMBER: To change the current USER number in
SUBMIT, include the USER command in the SUBMIT file.

INCLUDE FILES: An include file is a standard SUBMIT file subject to
all SUBMIT rules and features. Format for the INCLUDE command is
demonstrated below.

$INCLUDE filename parml parm2 parm3 ...

The filename in the INCLUDE command must have the filetype SUB to
indicate a SUBMIT file and parameters are standard SUBMIT
parameters. An INCLUDE file can nest up to four SUBMITs in a SUBMIT
command.

EMBEDDED CONTROL CHARACTERS: Control characters can be embedded in
a SUBMIT file by preceding the capitalized character with an ASCII
up arrow ^. For example, type ~X to embed a CTRL-X. Embedded
control characters are not interpreted by MP/M II, but can be of use
to programs that SUBMIT executes.

Licensed users are granted the right to include these
enhancements in MP/M II Release 2.0 software.

I

All Information Presented here is Proprietary to Digital Research

264

All Information Presented here is Proprietary to Digital Research

265

MP/M II T.M. Operating System Release 2.0
Application Note 12, 9/14/81

Copyright © 1981 by Digital Research
MP/M II is a trademark of Digital Research.

SPOOL UTILITY MODIFICATIONS

Applicable products and version numbers: MP/M II Release 2.0

SPOOL can return an error message if the file to be spooled is
not found. To utilize this modification, SPOOL is divided into a
transient portion (SPOOL.PRL) and a resident portion. The transient
portion parses the command tail, opens the file, passes the file to
the spool queue (named SPOOLQ) , and displays an error message if the
open sequence on the file fails. Then, the transient portion ends
itself.

Issue a SPOOLQ command if you do not want to use a memory
segment to spool a file. Error messages are not returned, however.
Sample commands to spool a file are shown below.

SPOOL filel.typ,file2.typ .,.

The SPOOL process passes the command tail, checks for errors,
and sends the file to the spool queue (SPOOLQ).

SPOOLQ filel.typ,file2.typ ...

The command tail is sent to the spool queue (SPOOLQ) bypassing
error checking or error reporting.

The SPOOL utility sets its priority to 201. Most processes
execute ahead of the SPOOLER. To change the SPOOLER priority, the
SPOOL.BRS file is modified. Make sure you have a back-up copy of
SPOOL.BRS before using RDT to make the following changes.

A>rdt spool.brs

-s3b5
03B5 C9 c8
03B6 00 .
-ispool.brs
-w14
-go
A>gensys

Licensed users are granted the right to include these
enhancements in MP/M II Release 2.0 software.

1

All Information Presented here is Proprietary to Digital Research

266

All Information Presented here is Proprietary to Digital Research

267

MP/M II T.M. Operating System Release 2.0
Application Note 13, 9/14/81

Copyright © 1981 by Digital Research
MP/M II is a trademark of Digital Research.

RECORD LOCKING/UNLOCKING

Applicable products and version numbers: MP/M II Release 2.0

Record locking/unlocking allows multiple processes to share
access of one file. Files are opened in the UNLOCKED mode. A
record locked by one process can only be read by a different
process, however, a locked record can be modified by the initial
process. Avoid reading locked records to prevent reading data that
is being updated. To avoid reading locked records let the process
try to lock the record. If the attempt fails, do not read the
record. The following code segment demonstrates how to lock
records.

mvi c,2ch ;set multi-sector cnt.
mvi e,# ;# = num. of sectors
call bdos ;1<= # <=16
mvi c,2ah ;lock record
lxi d,fcb ;record to be locked
call bdos

The following code segment demonstrates how to unlock records.

mvi c,2ch ;set multi-sector cnt.
mvi e,# ;# = num. of sectors
call bdos ;1<= # <=16
mvi c,2bh ;unlock record
lxi d,fcb ;record to be unlocked
call bdos

fcb:
db O,’DATA’,AOH,20H,20H,20H,'DAT’,O
ds 20
db 10,0,0 ;beginning at record 10

Licensed users are granted the right to include these
enhancements in MP/M II Release 2.0 software.

1

All Information Presented here is Proprietary to Digital Research

268

All Information Presented here is Proprietary to Digital Research

269

MP/M II T.M. Operating System Release 2.0
Application Note 14, 9/14/81

Copyright © 1981 by Digital Research
MP/M II is a trademark of Digital Research.

GENSYS ENHANCEKKNTS

Applicable products and version numbers: MP/M II T.M. Release 2.0

Enhancements to GENSYS include the following new features and
facilities.

AUTOMATIC RESIDENT SYSTEM PROCESS INCLUSION FACILITY: The GENSYS
automatic system generation facility can be modified to include all
default disk RSP files. Type GENSYS $AR to include the RSP files
automatically. The R option must be used in conjunction with the A
option. Change the filetypes for files that you want to exclude
from GENSYS.

ERROR RECOVERY: If an error is encountered running in automatic
mode ($A option), GENSYS restarts in manual mode.

Licensed users are granted the right to include these
enhancements in MP/M II Release 2.0 software.

1

All Information Presented here is Proprietary to Digital Research

270

All Information Presented here is Proprietary to Digital Research

271

MP/M II T.M. Operating System Release 2.0
Application Note 15, 12/1/81

Copyright © 1981 by Digital Research
MP/M II is a trademark of Digital Research.

CHANGING THE PRIORITY OF SPOOL.PRL

Applicable products and version numbers: MP/M II Release 2.0

The SPOOL utility sets its priority to 201, therefore, most
other processes execute ahead of the SPOOLER. Modify the SPOOL.PRL
file to change the SPOOLER priority. If your product serial number
is between 4-000-00001 and 4-000-00464, install MP/M II Patch 11
before changing the SPOOL.PRL default priority.

Make sure you have a back-up copy of SPOOL.PRL before using DDT
to make the following changes.

A>ren spool.sav=spool.prl
A>ddt spool.sav
[MP/M II] DDT VERS 2.0
NEXT PC
0980 0100
-s269
0269 C9 c8
026A CD .
-ispool.prl
-Wll
-go

A>

Licensed users are granted the right to include these
enhancements in MP/M II Release 2.0 software.

1

All Information Presented here is Proprietary to Digital Research

272

All Information Presented here is Proprietary to Digital Research

273

MP/M II T.M. Operating System Release 2.0
Application Note 16, 12/1/81

Copyright © 1981 by Digital Research
MP/M II is a trademark of Digital Research.

CHANGING THE BACKSPACE AND RUBOUT KEY FUNCTIONS

Applicable products and version numbers: Mp/M II T.M. Release 2.0

Program: RESBDOS

Under MP/M II, the BACKSPACE key or CTRL-H (ASCII 08H) does a
destructive backspace deleting the last character in the command
buffer. The RUBOUT key (ASCII 7FH) or DELETE key deletes the last
character in the command buffer and echoes it to the screen.

Procedure to reverse the BACKSPACE and RUBOUT key functions:

A>ren resbdos.sav=resbdos.spr
A>ddt resbdos.sav
[MP/M II] DDT VERS 2.0
NEXT PC
Of8O 0100
-scOa
OCOA 08 7f
OCOB C2
-sc22
OC22 7F 08
OC23 C2 .
-iresbdos.spr
-wld
-go

OA>gensys

Procedure to make RUBOUT identical to BACKSPACE:

A>ren resbdos.sav=resbdos.spr
A>ddt resbdos.sav
[MP/M II] DDT VERS 2.0
NEXT PC
Of8O 0100
-lc26
OC26 MOV A,B
OC27 ORA A
OC28 Jz 09F6
-ac26
OC26 jmp aOe
OC29
-bb28,1
-iresbdos.spr
-wld
-go

OA>gensys

All Information Presented here is Proprietary to Digital Research

274

MP/M II Release 2.0, Application Note 16
RESBDOS, 12/1/81 (cont'd)

Procedure to make BACKSPACE identical to RUBOUT:

A>ren resbdos.sav=resbdos.spr
A>ddt resbdos.sav
[MP/M II] DDT VERS 2.0
NEXT PC
Of8O 0100
-IcOe
OCOE MOV A,B
OCOF ORA A
oclo iz 09F6
-acOe
OCOE jmp, a26
ocil
-bblO,l
-iresbdos.spr
-wld
-go

OA>gensys

Licensed users are granted the right to include these
enhancements in MP/M II Release 2.0 software.

